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ABSTRACT
Address-Space Layout Randomization (ASLR) is a tech-
nique used to thwart attacks which relies on knowing the
location of the target code or data. The effectiveness of
ASLR hinges on the entirety of the address space layout
remaining unknown to the attacker. Only executables com-
piled as Position Independent Executable (PIE) can obtain
the maximum protection from the ASLR technique since all
the sections are loaded at random locations.

We have identified a security weakness on the implemen-
tation of the ASLR in Linux when the executable is PIE
compiled, named offset2lib. A PoC attack is described to
illustrate how the offset2lib can be exploited. Our attack
bypasses the three most widely adopted and effective pro-
tection techniques: No-eXecutable bit (NX), address space
layout randomization (ASLR) and stack smashing protector
(SSP). A remote shell is got in less than one second.

Finally, how the RenewSSP technique can be used as a
workaround is discussed and how to remove the offset2lib
weakness from the current ASLR implementation is also pre-
sented.

1. INTRODUCTION
Address Space Layout Randomization (ASLR) is a defen-
sive technique which randomizes the memory address of the
processes, trying to deters exploit attempts which relays
on knowing of the location of applications memory map.
Rather than increasing security by removing vulnerabilities
from the system as source code analysis tools [1] do, ASLR is
a prophylactic technique which tries to make more difficult
to exploit existing vulnerabilities.

The ASLR is commonly complemented with the well known
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and widely used Stack Smashing Protector (SSP) and No-
eXecute (NX)1 techniques. When these three techniques are
properly implemented on a system they provide a strong
defense against most memory error exploitations.

Unfortunately, it is not always possible to implement these
techniques correctly. It is out of the scope of this paper to
present an exhaustive list of improper or partial implementa-
tions. What follows is just a few illustrative examples. The
NX requires hardware support, otherwise it can not be effi-
ciently implemented, also most current attacks do not need
to execute injected code [2]. ASLR is a simple concept: all
the addresses that the attackers may use to build an exploit
shall be unknown (hard to guess) to them, but a complete
implementation (all areas located at random places) may
have compatibility issues; another limitation is the reduced
range of addresses to allocate the areas, most 32 bits systems
only have 8 bits of effective entropy. The main problem of
the SSP comes from the small range of random values of the
canary on 32 bit systems [3].

A technique that is known to be very effective but that is
improperly used provides a dangerous false sense of secu-
rity that can be easily exploited by attackers. The fault
or weakness remains latent for a long period of time which
enables the attackers to prepare multiple exploits and tools
that effectively bypass barriers that are generally considered
as unbreakable (or properly settled), which is mainly true,
except on those “improperly” implemented systems.

The security offered by ASLR is based on several factors [4],
including how predictable the random memory layout of a
program is, how tolerant an exploit technique is to variations
in memory layout, and how many exploitation attempts an
attacker can practically make.

In this paper, we analyzed the effectiveness of the address
space layout randomization in multiple randomized instances
of a single application. In particular we implement a new
attack based on a stack buffer overflow which defeats the
ASLR in less than one second on a machine running a 64
bits Linux with Full ASLR.

1Also known as Data Execution Prevention (DEP) or Write
XOR eXecute (W ∧X).
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Our contributions in this paper are:

1. Offset2lib: A weakness disclosure of the ASLR in Linux.

2. An attack which, taking of advantage of the offset2lib,
bypasses the full ASLR Linux on a 64 bit system in
less than 1 second.

3. A discussion about preventing techniques against our
attack.

The rest of this paper is organised as follows: The next
section provides an overview of the ASLR technique and
the background needed to follow the rest of the paper. In
section 3 the weakness of the ASLR is presented and the PoC
which exploits it is in section 4. Existing countermeasures to
mitigate the attacks that can use the weakness are discussed
in section 5.

2. ASLR DESIGN
The core idea of the ASLR is to place all process areas (data,
bss, heap, text, libs, etc.) at random addresses. Rather than
“random address” is more accurate to define as addresses
that are unknown and hard to be guessed by the attackers.

Address space randomization hinders some types of security
attacks by making it more difficult for an attacker to predict
target addresses. For example, attackers trying to execute
return-to-libc attacks [5] must know (or compute) the loca-
tion of the target function.These values have to be guessed
to bypass the ASLR successfully.

ASLR security is based upon the low chance of an attacker
of guessing the locations of randomly-placed areas, and so,
the more entropy the more secure it is. There are three
different entropy dimensions for each area:

1. Non-randomised: It is widely accepted that even a sin-
gle non-randomised area can be used by the attackers
to defeat the ASLR. Therefore, all areas must be ran-
domised.

2. Range of entropy: The size or range of possible values
where each area can be located. The larger the range
the better.

3. The relocation frequency: The frequency at which the
areas are newly mapped. Ideally, every process shall
have a custom memory space where all the areas are
located at different places with respect to previous exe-
cutions of the same executable, and with respect other
concurrent processes. The more frequent the better.

On most systems, the initial implementations of the ASLR
relied on the shared library infrastructure. Therefore, the
ASLR was initially applied only on libraries, which was very
effective against direct return-2-lib attacks. The advances in
ROP (Return Oriented Programming) [6] and related tech-
niques allowed attackers to build exploits on almost any sec-
tion of code that was not randomised which stimulated the
need for a full implementation of the ASLR. As of the writ-
ing of this paper, there are still systems that do not support
full-ASLR or it is an optional feature.

The range of entropy is seriously limited by the available
virtual memory space. It is almost impossible to have a
“decent” implementation on 32 bit systems; with only 256
possible values, it is considered almost useless. A simple
brute force attack can defeat the ASLR in a few millisec-
onds. But on 64 bit systems, the range is large enough to
effectively discourage attackers unless other method to ex-
tract information form the target process is available. Even
in unrealistic attacks where the system does not provide the
SSP and the NX bit protections [7] the time to bypass the
ASLR needed oscillate between 1.7 hours and 34.1 hours.

The last source of entropy comes from the refresh frequency.
This feature is directly related on how shared libraries are
handled and shared between processes. If the shared li-
braries must be mapped on the same virtual addresses in
all the processes, then ASLR can only be done on a “per-
boot” basis. That is, only the very first time that a library
is loaded it is randomly mapped. Posterior processes must
use the library at the already mapped place. This sequence
produces a single memory mapping of libraries at system
level which is only renewed when the system reboots.

PaX published the first design and implementation of ASLR [8]
in July 2001. The PaX project implementation is the most
complete and advanced, providing also kernel stack random-
ization from October 2002 onward. It also continues to pro-
vide the most entropy for each randomized layout compared
to other implementations.

Two years after ASLR was invented and published as part
of Page EXec (PaX) project, a popular security patch for
Linux, OpenBSD became the first mainstream operating
system to support partial ASLR (and to activate it by de-
fault) [9]. OpenBSD completed its ASLR support after
Linux in 2008 when it added support for PIE binaries [10].

Microsoft R© Windows Vista R© (released January 2007) was
the first Windows R© operating system to support ASLR [11].
Then all subsequent versions of Windows OS also supported
ASLR [12]. There is a wide range of implementations with
different levels of entropy depending on the version and
the security configuration: Enhanced Mitigation Experience
Toolkit (EMET), High Entropy ASLR or ForceASLR. For
the purpose of this paper, we are only interested in the rel-
ative positions where each section of the program is loaded.
Since all versions of windows allocate the libraries on a per-
boot basis and the application executable is loaded at a ran-
dom position with respect to the already loaded libraries,
our technique does not apply to Windows.

Apple R© first introduced randomization of some library off-
sets in Mac OS X R© v10.5 (released October 2007) [13].
However, because this initial implementation was limited
to only certain system libraries, it was naturally unable to
protect against many attacks that a full ASLR implementa-
tion is designed to defeat. In Mac OS X Lion 10.7, Apple
expanded their ASLR implementation to cover application
code also. Apple stated that “address space layout random-
ization (ASLR) has been improved for all applications. It is
now available for 32-bit apps (as are heap memory protec-
tions), making 64-bit and 32-bit applications more resistant
to attack.”



As of OS X Mountain Lion 10.8, the kernel as well as kexts
and zones are randomly relocated during system boot. As in
the case of Windows, all applications see a concrete library
at the same address.

Linux have the more advanced implementation of ASLR.
The libraries are compiled as Position Independent
Code (PIC), which allows to share the same exe-
cutable image among several processes and each pro-
cess can map the library at different addresses. As
a result, ASLR implements a “per-process” randomisation.
The number of bits used to randomise the memory areas
varies from one version to another. On 64 bits, the entropy
is by default 28 bits for mmapped areas, while the PaX im-
plementation operates with 40 bits of entropy, which is far
more effective against full-word brute force2 attacks.

Only the code that as been compiled to be relocatable or to
be position independent (PIC or PIE) can be “easily” ran-
domised3. Typically, only the executables which are more
exposed to attacks (as web browsers, system commands and
the like) are PIE compiled. By default, the application code
is compiled to be position dependent (non-PIE). Several au-
thors suggested that the overhead introduced by PIE is rea-
sonably low compared with the security benefits.

2.1 PIC & PIE overview
Libraries can be easily relocated thanks to the strong ef-
fort done by operating system and compiler designers to
reduce application memory footprint by sharing the library
code among all running processes. There are two main ap-
proaches to share a library:

1. Load time relocation.

2. Position independent code (PIC).

The fist solution, load time relocation, takes more time to
load the program but the execution, once it has been loaded,
is faster than PIC (on x86 and other processor which lack
instruction-relative addressing), but it forces to map the al-
ready loaded library in the same virtual addresses in all the
subsequent processes that want to use (share) it. Basically,
the first time that a library is loaded, the system allocates a
base address for it and links/relocates the code of the library
to work at the given addresses. The next application that
uses the library must place at the already assigned virtual
directions, because the code has been“patched”to be at that
given addresses. That is, all libraries are allocated at ran-
dom offsets (chosen at a boot time) but all the applications
share the same offsets.

A more advanced and flexible solution is to generate code
that does not depend on the directions where it is located,
but which can be executed independently at any position,
that is PIC code. This code works with offsets relative to the
PC (program counter) rather than absolute addresses. This

2Full-word brute force refers to the fact that at each trial,
the full word is guessed, to distinguish from the byte-for-byte
brute force where a single byte is guessed on each trial.
3Note that PaX solution is able to randomise even non-PIE
code

code can be loaded once in physical RAM and mapped at
any virtual address in each process. On one hand PIC code
is slower on x86 family due to lack of PC relative addressing
(detailed analysis is out of the scope of this paper), but on
the other hand the code loaded in RAM is exactly the same
than the code in the file of the library which makes swapping
slightly more efficient.

PIC libraries can be freely loaded at any address in any
process. Regarding security, the PIC mechanism provides
a higher level of entropy because each process may have
a different map. Linux effectively maps each library at a
different direction on each process.

The last step on randomising the code of the application is
to randomise the directions where the application code is
executed. Note that all the previous mechanisms come as a
consequence of library sharing efforts. But the code of the
applications, which is not shared, is compiled by default at
absolute addresses. The need to randomise the application
code is only driven by security requirements.

Position Independent Executable (PIE) is the name given
to the code generated by the compiler for application code
when it is compiled as position independent. It relies on
the same principles than the PIC, but it is optimized for
application executables.

3. THE OFFSET2LIB WEAKNESS
This section describes a weakness on the design of the ASLR
on Linux. It is specific to Linux and does not affect Win-
dows or Mac OS. It is not a programming error on the code
that implements the ASLR, but a weakness on the design.
Fortunately, it can be easily fixed, see section 6.

The problem appears when an application is PIE compiled.
The executable image is mapped as if it were a shared li-
brary, that is, it is loaded at the same memory place than
libraries. The Linux algorithm for loading ASLR objects
works as follows:

1. The first library is loaded at a random position.

2. The next ASLR object is located right below (lower
addresses) the last object.

All libraries are located “side by side” at a single random
place. In the case of PIE applications, the application is
also placed in this memory place. Therefore, a memory leak
of an address belonging to the application is enough to de-
randomise all the libraries. Note that it is not necessary to
have a leak of a GOT4 or PLT5 entries (after is has been
properly initialised) but just the program counter of the pro-
cess.

The weakness that we exploit is that the distance between
the app-PIE application and libraries are always the same
in a concrete system. In order words, the distance in bytes
from where the application was loaded and where the li-
braries are mapped is an invariant value in all executions.

4GOT: Global Offset Table.
5PLT: Procedure Linkage Table.



7f36c6a07000-7f36c6bbc000 r-xp .../libc-2.15.so
7f36c6bbc000-7f36c6dbb000 ---p .../libc-2.15.so
7f36c6dbb000-7f36c6dbf000 r--p .../libc-2.15.so
7f36c6dbf000-7f36c6dc1000 rw-p .../libc-2.15.so
7f36c6dc1000-7f36c6dc6000 rw-p
7f36c6dc6000-7f36c6de8000 r-xp .../ld-2.15.so
7f36c6fd0000-7f36c6fd3000 rw-p
7f36c6fe5000-7f36c6fe8000 rw-p
7f36c6fe8000-7f36c6fe9000 r--p .../ld-2.15.so
7f36c6fe9000-7f36c6feb000 rw-p .../ld-2.15.so
7f36c6feb000-7f36c6fed000 r-xp /tmp/app-PIE
7f36c71ec000-7f36c71ed000 r--p /tmp/app-PIE
7f36c71ed000-7f36c71ee000 rw-p /tmp/app-PIE
7fffe4018000-7fffe4039000 rw-p [stack]
7fffe41b7000-7fffe41b8000 r-xp [vdso]

Listing 1: Memory map of the“app-PIE”application
compiled with PIE.

We named this invariant distance offset2lib. It is possible to
calculate off-line the offset to each library.

0
x
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0
0

For instance, as is showed in listing 1 from the application
text base to libc text base the offset2lib is:

0x7f36c6feb000-0x7f36c6a07000 = 0x5e4000

The offset2lib is a constant value which may be slightly dif-
ferent on each system. The value depends on the following:

• The set of libraries used by the application: De-
pending on the libraries used by the application the
distance between the application base text and the tar-
get library could be higher or lower. This information
is contained in the executable and can be calculated
off-line. So, the number of libraries are known and is
the same for all systems.

• The version of the each library: When a new li-
brary version is released is a incremental modification
of the previous one, typically it contains new features
or security fixes. These modifications could affect to
the resulting library size. Different systems use differ-
ent versions of the libraries, which will affect to the dis-
tance from where the application is loaded and where
their libraries are mapped. So, the specific version of
a concrete library is the same for a concrete systems.
This information is also contained in the executable.

The size of the application does not change the offset2lib val-
ues. This is because the executable is mapped at the mmap
base, rather than below it. For instance, in the listing 1, the
mmap base is 0x7f36c6feb00.

This weakness is specially dangerous because a leak of any
address belonging to the application can be immediately
used to defeat the ASLR. As detailed in section 4 our attack
only needs to do a very simple subtraction from the leaked
address.

This weakness could be exploited in both 32 and 64 bit sys-
tems, but it is particularly interesting for the latter due to
the high entropy introduced by the ASLR on 64 bits which
makes quite hard to use brute force attacks to in practice.

Note that offset2lib can be exploited by attacks that relies
on a vulnerability in the application code not in the libraries
or the operating system. As cited by Steve McConnell [14]:

“A pair of studies performed [in 1973 and 1984]
found that, of total errors reported, roughly 95%
are caused by programmers, 2% by systems soft-
ware (the compiler and the operating system),
2% by some other software, and 1% by the hard-
ware. Systems software and development tools
are used by many more people today than they
were in the 1970s and 1980s, and so my best guess
is that, today, an even higher percentage of errors
are the programmers’ fault.”

Application code is more prone to contain programming er-
rors, and so memory leaks.

4. BUILDING THE ATTACK
This section details the steps to build a successful attack
to bypass the ASLR on x86 64 Linux by exploiting the off-
set2lib. This is only a demonstrative example, and other
attack vectors are also possible.

Our attack successfully defeats the ASLR on PIE appli-
cations with a few attempts both, locally and remotely.
Shacham et al.’s attack [4] requires up to 2n (where n is
the number of entropy bits) attempts making the attack
unfeasible for 64 bits architectures; and the Roglia et al.’s
attack [15] fails for PIE applications.

4.1 The vulnerable server
To demonstrate the feasibility to bypass the ASLR by ex-
ploiting our finding, we have specially crafted a target server
with a vulnerability. The vulnerable server has been exe-
cuted in an Ubuntu 12.04.1 LTS Linux distribution equipped
with an x86 64 Intel Core i3-370M CPU, clocked at 2.4 GHz
and 3072 MB RAM.

We have introduced a standard stack buffer overflow error,
similar to those recently found in Nginx HTTP Server [16],
Ultra Mini HTTPD [17] and PostgreSQL [18, 19], in the tar-
get server. The server is implemented as a standard forking
server, where each client request is attended by a dedicated
child process. This architecture is widely used due to its
simplicity for handling multiple concurrent clients, stability,
security and scalability.

The vulnerable function introduced in the server is showed in
listing 2. The overflow occurs when a buffer, input, larger
than 48 bytes is passed to the vuln_func(). It is naively
copied into the local vector, buff, which is overflown. Also,
we consider that the vulnerable function is invoked with the
same data sent to the server by the clients, attackers in
our case. That is, we assume that there is no intermediate
cooking or modification of the attacker data.



1 void vuln_func(char *input, int linput){
2 char buff[48];
3 int i = 0;
4 ...
5 for (i = 0; i < linput; i++) {
6 buff[lbuff++] = input[i];
7 ...
8 }

Listing 2: Server vulnerable function.

The server has been compiled and executed with the maxi-
mum possible ASLR support from both the compiler and the
operating system. Table 1 shows information about compi-
lations flags as well as operating system configuration and
other protection mechanisms under which our server will be
executed.

Parameter Comment Configuration

App. relocatable Yes -fpie -pie
Lib. relocatable Yes -Fpic
ASLR config. Enabled randomize_va_space = 2
SSP Enabled -fstack-protector-all
Arch. 64 bits x86 64 Linux
NX Enabled PAE or x64
RELRO Full -wl,-z,-relro,-z,now
FORTIFY Yes -D_FORTIFY_SOURCE=2
Optimization Yes -O2

Table 1: Security server options.

Although bypassing the Stack Smashing Protector (SSP)
technique, FORTIFY or the RELocation Read-Only (RELRO)
are not our primary goal, since they can be bypassed with-
out extra complexity in the description of this example we
decided to enabled them for showing a more realistic PoC.

As shown in table 1, we have added extra security flags to the
server. Concretely we added the -fstack-protectorall
GCC flag which protects not only functions with buffers
larger than 8 bytes but every function in the application
or the GCC flag -wl,-z,-relro,-z,now which remove
the possibility to defeat the ASLR by overwriting GOT en-
tries [15].

4.2 Steps to build the exploit
We have structured the attack in 5 steps. Briefly, our at-
tack starts by off-line analysing the target application and
its execution framework. The missing information (due to
ASLR) is obtained via brute force, thanks to the forking
server architecture of the target. Once we have the full ad-
dress belonging to the application, the base address of the
application is calculated. The last step is to have the mem-
ory map of all the libraries.

With the obtained information it is easy to arm a ROP
program to get a remote shell.

Exploit step 1: Extract static information
Before going for the address of the target application, it is
mandatory to analyse the information that can be obtained
off-line. The result of the analysis will guide and focus the
way the attack is carried out. It is possible to obtain some

bits of the address off-line, which can be used to check that
the target leaked address is correct (what it is expected) or
to avoid leaking unnecessary parts of the address (which are
already known).

Since in this attack we exploit a stack buffer overflow, we
decided to leak the saved IP address of the function which
calls the vuln_func(), that address is saved in the stack
as the return address of the current stack frame. At first
glance, this address might seem unknown (fully random),
but it is possible to set some high and low bits of the saved
IP just knowing the way the process are loaded in memory.
The higher 24 bits are constant usually constant (it depends
on the space reserved for the stack6). In practice, there are
two possible values: 0x00007F and 0x00007E. Since the
first one is much more likely to occur than the second one,
we will use 0x00007F on this example.

Figure 1: Saved IP: Hardcoded high bits.

The address we are leaking (saved IP) is used to resume
the execution at the instruction following the subroutine
call. Hence, by disassembling the executable from where
the function call is made, we can obtain the low bits of the
next address to be executed which is located right after the
assembler call vuln_func instruction. As listing 3 shows
these bits correspond with 0x12DF.

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
..... ..... [CALLER_PAGE_OFFSET] .....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
..... ..... [From the ELF] .....

Listing 3: Assembly dump of vulnerable server.

Since the executable has to be aligned to page, which in
current x86 64 Linux is 4096 bytes, the 12 lowest bits will
not change when the executable is loaded. By doing a simple
bit mask operation we obtain the 12 lowest bits, which are
0x2DF.

The resulting saved IP address of setting both highest and
lowest known bits is showed in listing 2.

6The details of how the mmap base is calculated is beyond
the scope of this paper.



Figure 2: Saved IP: Low bits from ELF.

Exploit step 2: Brute forcing return address
The next step consist on obtaining the remaining 28 random
bits of the saved IP address. To obtain these bits we made
a fast brute force byte-for-byte attack [20].

The second lowest byte is a “special byte” because the lower
4 bits are already known. So, to brute force this byte we
fixed these 4 bits and we changed only the 4 highest ones
per attempt. In the worst case it will take only 24 = 16 at-
tempts (0x2, 0x12, 0x22, 0x32 ... 0xF2). In the
example, the resulting value was 0xC2.

The remaining three bytes have been guessed by doing a
standard byte-for-byte attack. In the worst case, it takes
3 ∗ 28 = 768 attempts.

After execute the byte-for-byte attack we particularly ob-
tained the 0x36C6FEC value. In this point we already known
the saved IP value. Listing 3 shows the application leaked
address that we obtained.

Figure 3: Saved IP: Brute force bits.

To guess all the unknown bits we need to perform 24+3∗28
2

=
392 attempts on average.

The vulnerable function in our server has a buffer size of 48
bytes for clarity. Assuming a more realistic scenario with a
size buffer of 512 or even 1024 bytes the length of the client
request sent to the server will be around 196 or 392 Kbytes
respectively, which is a fairly small number of bytes sent
over the net. The temporal cost of the attack is determined
by server bandwidth.

Note that the server was compiled with the stack smashing
protector enabled, which forces to set correctly the stack ca-
nary value on every overflow. The value of the canary must
be obtained before proceeding to brute forcing the saved IP
address.

For simplicity, we omitted attack to the SSP. Actually, this
protection mechanism can be bypassed by following the same
strategy as used to brute force the three bytes of the saved
IP address. Since the first byte is set to zero on Ubuntu, on

average it will take 7∗28
2

= 896 trials to obtain the canary
value. Adapting the attack to bypass the SSP and assuming
a buffer of 1024 bytes the amount of bytes sent to the server
would be approximately 896 Kbytes.

In our attack, the whole time to bypass both the SSP and
the ASLR protections are still around one second. This is
because the average number of bytes sent to the server is
≈ 60 Kybtes (896 + 392 = 1288 attempts ∗ 48 bytes). The
attack will success on around one second in systems that are
able to handle enough concurrent requests and a bandwidth
greater than 60 Kbytes/s.

Exploit step 3: Calculating base application address
In this step we use the leaked address in the previous step
to calculate the executable base address. The formula to
obtain the base address is:

App_base = (savedIP & 0xFFF)-(CALLER_PAGE_OFFSET << 12)

Where the savedIP is the return address value obtained
in step 2. The CALLER_PAGE_OFFSET value is the num-
ber of pages between the executable base and the return
address (the address right after the callq which invoked
vuln_func). The next instruction to the call is at offset
0x12DF which means that next instruction lea is not at
the first page but the second one. Therefore the value of
CALLER_PAGE_OFFSET is 1 (the second page).

As a result we obtained the base address of the PIE compiled
application which is:

0x7F36C6fEB000 = (0x7f36C6FEC2DF & 0xFFF) - (1 << 12)

Exploit step 4: Calculating library offsets
The offset value from the base executable application to each
library (offset2lib) depends on the size and the number of
libraries in between. In addition, some applications and li-
braries may request mmapped memory before loading the
libraries. For instance, as showed in listing 1 from the base
base address of the application where the dynamic linker is
loaded there are two memory mapped areas:
[0x7f36c6fd0000 - 0x7f36c6fd3000]
[0x7f36c6fe5000 - 0x7f36c6fe8000].
The distance remains unchanged between different execu-
tions of the application. Table 2 shows two offset2lib values
for this example.

Library Version Offset2lib (bytes)
Dynamic linker 2.15 0x225000
Libc 2.15 0x5e4000

Table 2: Offset2lib values for the PoC.

These offsets are different depending on the system, but are
quite similar among them. Table 3 lists the values for dif-
ferent Libc versions on 64 bits on some Linux distributions.

Distribution Libc version Offset2lib (bytes)
CentOS 6.5 2.12 0x5b6000
Debian 7.1 2.13 0x5ac000
Ubuntu 12.04 LTS 2.15 0x5e4000
Ubuntu 12.10 2.15 0x5e4000
Ubuntu 13.10 2.17 0x5ed000
openSUSE 13.1 2.18 0x5d1000
Ubuntu 14.04.1 LTS 2.19 0x5eb000

Table 3: offset2lib for libc in different distributions.



Exploit step 5: Getting app. process mapping
The base address of any library can be calculated by just
subtracting the offset2lib of the given library from the base
of the executable. For instance, to calculate the Libc base
address in our example we use the base address of the ap-
plication obtained in the step 3 and the offset2lib for the
Libc obtained in the step 4. The Libc base address for the
Ubuntu 12.04 LTS is:

0x7F36C6A07000 = 0x7F36C6fEB000 - 0x5E4000

As it can be verified listing 1. At this point, the ASLR
is defeated and we can repeat the operation to obtain any
mapped library of the process.

4.3 Exploiting the server target
Although the goal of this paper consists on bypassing the
ASLR, for completeness we briefly describe how we use the
information to get a remote shell form the vulnerable server.

We obtained the canary value and the base address of the
Libc library in previous steps. This allow us to use the Libc
code to build ROP gadgets. In our experiments we found
enough gadgets in the Libc 2.15 to build a ROP sequence to
execute commands. We build a final exploit adding the ROP
sequence payload which allowing us to obtain a remote shell
and then we throw it against the server. Our results were
very clear, the exploit bypassed all protection techniques in
an user-inappreciable time. We launched the exploit and
immediately a remote shell was obtained.

5. COUNTERMEASURES DISCUSSION
Obviously, prevention is the best antidote, but as experience
shows, it is impossible to write code free of errors.

Fortunately, the combination of multiple protection tech-
niques has a multiplicative effect. For example a leak of an
application address may be used to bypass the ASLR and
build the correct ROP sequence, but the SSP may prevent
from redirecting the execution flow. In other cases, the con-
trol flow can be redirected but the ASLR make it useless.

The effectiveness of both ASLR and SSP techniques depend
on keeping secret some critical information. In the former
case, the information is the memory map of the target and
in the later it is the value of the canary guard. In both cases,
the more entropy the harder to guess them.

The entropy concept is quite generic. Typically, it is only
associated with the range of values the secret may take. And
it is measured as the number of random bits of the address
or the canary. For example, PaX implements a stronger
variant of ASLR which does (among other things) exactly
this. On 64-bit x86 machines PaX’s ASLR implementation
operates with 40 bits of entropy compared with the 28 bits
on the default Linux implementation. Unfortunately, some
attacks are not blocked by increasing this kind of entropy.
Vulnerabilities that are prone to byte-for-byte attacks are
only linearly (and not exponentially) improved when more
bits of entropy are added. In other words, byte-for-byte
attacks are very effective regardless the number of random
bits to discover.

But there are others dimensions of entropy that shall also
be considered. For example, renew the secrets as often as
possible (entropy on the time axis). An recent example of
another form of entropy has been proposed by Hector et
al. [3] for the SSP technique. The new technique, called
renew-SSP, is a variant of the classic SSP technique where
the value of the secret canary is renewed dynamically at key
places in the program. This way, the secret is refreshed more
often. Rather than refresh/renew the secret once per-process
it can be refreshed even once per-loop. The technique is not
intrusive, and can be applied by just pre-loading a shared
library. The overhead is almost negligible.

Beyond the technical aspects, a critical issue to take into
account when using new protection techniques is backward
compatibility. There is a large amount of code which can not
be upgraded easily because be the code is no longer avail-
able or maintained. Also techniques which introduce a lot of
changes in the development process are hardly adopted. For-
tunately, the renew-SSP technique is transparent and easy
to apply.

The vulnerability used in this paper to illustrate the off-
set2lib is not exploitable when the renew-SSP technique is
used. We tested the same executable image in both, a stan-
dard system (which was defeated in one second) and a sys-
tem with the renew-SSP (which made the attack not prac-
tical).

Re-randomise the ASLR dynamically at run-time seems to
be not an easy task. Once the program starts running, living
objects (addresses of structures and functions) refer to the
current mapping. The more references/pointers are created
the more costly will be to re-locate all those living objects.

Fortunately, there are room for improvement which is both
simple to implement and transparent to existing code. The
next section outlines a new implementation of ASLR with
more entropy.

6. ASLRv3
The current implementation of ASLR defines three randomly
located zones: a zone to allocate the stack, another for the
heap and another zone to locate the shared objects (referred
as mmap_base).

In order to remove the offset2lib weakness, the executable
shall be located at a different zone than libraries. There are
several implementation alternatives; one possible solution is
to move the executable from the mmap zone to the any other
two, but this solution moves the weakness to a different form
of exploitation rather than removing the weakness. A better
solution would be to define a new zone for the executable.

The PaX patch implements four ASLR zones, which effec-
tively settles the offset2lib weakness. Pax solution also in-
creases the number of entropy of each zone, even it is able
to randomise non-PIE applications. As far as we know it is
the most advanced ASLR implementation. Unfortunately,
some people think that it is a too complex patch with, may
be, too many features (some advanced features may break
backward compatibility on some applications).



We have implemented the ASLRv37 as a small patch for
the Linux kernel which removes the offset2lib weakness with
minimal changes on the kernel code. Our patch just creates
a new random zone for the executable. Figure 4 sketches
the main differences between current process layout and the
resulting layout with our patch.

Current ASLR Patched ASLR

Figure 4: Random zones.

For compatibility reasons we have implemented this patch as
a new randomization mode, configurable through /proc/-
sys/kernel/randomize_va_space, as option number 3.

Value Description

0 No randomization. Everything is static.

1 Conservative randomization. Shared libraries, stack,
mmaped, VDSO and heap are randomized.

2 Full randomization. In addition to elements listed
in the previous point, memory managed through
brk() is also randomized.

3 As 2 but PIE applications are loaded at a random
position.

7. CONCLUSION
We present a new weakness on the current implementation
of the ASLR Linux systems which affects PIE compiled ex-
ecutables. Applications compiled with PIE are considered
to be more robust since it makes attacks more difficult, for
instance it is not possible to use return-2-* strategies.

We show that it is possible to de-randomise the ASLR, and
so defeat it, if an attacker can obtain an address belonging to
the application program. Previous attacks required to leak a

7http://cybersecurity.upv.es/solutions/
aslrv3/aslrv3.html

pointer belonging to a library. Since the application code is
more prone to contain programming bugs, our finding opens
the possibility to exploit a wider range of error.

The weakness is illustrated with a detailed proof of con-
cept exploit against a vulnerable server, which contains a
standard stack buffer overflow, compiled with all security
options enabled and with the maximum level of ASLR pro-
tection randomize_va_space=2. Concretely, we imple-
mented the attack which bypasses the three most widely
used and effective protection techniques, namely No-eXecutable
bit (NX), address space layout randomisation (ASLR) and
stack smashing protector (SSP). Our attack bypasses the
ASLR on 64 bit Linux and obtain a remote shell in less than
one second.

A review of the existing countermeasures that may mitigate
the exploitation of the weakness is presented. A holistic
defense is considered, not limited to the ASLR but also how
other techniques can be used to avoid the attack.

Finally, we propose ASLRv3 which removes the offset2lib
weakness. The new design is transparent to the applications,
that is, no need to recompile the application code, only the
Linux kernel shall be modified.

A general conclusion of this work is that despite the great
advances in many mitigation techniques, there are still pro-
gramming bugs (as the one shown as PoC) that can be suc-
cessfully exploited. Therefore, it is mandatory to keep de-
veloping new techniques or improving existing ones.
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