This is a personal blog. My other stuff: book | home page | Substack

Bash bug: the other two RCEs, or how we chipped away at
the original fix (CVE-2014-6277 and '78)

The patch that implements a prefix-based way to mitigate vulnerabilities in bash function
exports has been out since last week and has been already picked up by most Linux vendors
(plus by Apple). So, here's a quick overview of the key developments along the way, including
two really interesting things: proof-of-concept test cases for two serious, previously non-
public RCE bugs tracked as CVE-2014-6277 and CVE-2014-6278.

NOTE: If you or your distro maintainers have already deployed Florian's patch, there is no
reason for alarm - you are almost certainly not vulnerable to attacks. If you do not have this
patch, and instead relied only on the original CVE-2014-6271 fix, you probably need to act
now. See this entry for a convenient test case and other tips.

Still here? Good. If you need a refresher, the basic principles of the underlying function export
functionality, and the impact of the original bash bug (CVE-2014-6271), are discussed in this
blog post. If you have read the earlier post, the original attack disclosed by Stephane Chazelas

should be very easy to understand:

}; echo hi mom;' bash -c

In essence, the internal parser invoked by bash to process the specially encoded function
definitions passed around in environmental variables had a small problem: it continued
parsing the code past the end of the function definition itself - and at that point, flat out
executed whatever instructions it came across, just as it would do in a normal bash script.
Given that the value of certain environmental variables can be controlled by remote attackers

in quite a few common settings, this opened up a good chunk of the Internet to attacks.

The original vulnerability was reported privately and kept under embargo for roughly two
weeks to develop a fairly conservative fix that modified the parser to bail out in a timely
manner and do not parse any trailing commands. As soon as the embargo was lifted, we all
found out about the bug and scrambled to deploy fixes. At the same time, a good chunk of
the security community reacted with surprise and disbelief that bash is keen to dispatch the
contents of environmental variables to a fairly complex syntax parser - so we started poking

around.

Tavis was the quickest: he found that you can convince the parser to keep looking for a file
name for output redirection past the boundary between the untrusted string accepted from
the environment and the actual body of the program that bash is being asked to execute
(CVE-2014-7169). His original test case can be simplified at:

HTTP_COOKIE=" () function a a>\' bash -c echo

This example would create an empty file named "echo", instead of executing the requested
command. Tavis' finding meant that you would be at risk of remote code execution in
situations where attacker-controlled environmental variables are mixed with sanitized,
attacker-controlled command-line parameters passed to calls such as system () OF popen (). For

example, you'd be in trouble if you were doing this in a web app:

em("echo '"+ sanitized string without c

d/program") ;

...because the attacker could convince bash to skip over the "echo" command and execute the
command given in the second parameter, which happens to be a sanitized string (albeit
probably with no ability to specify parameters). On the flip side, this is a fairly specific if not
entirely exotic coding pattern - and contrary to some of the initial reports, the bug probably

wasn't exploitable in a much more general way.

Chet, the maintainer of bash, started working on a fix to close this specific parsing issue, and

released it soon thereafter.

http://lcamtuf.coredump.cx/prep/
http://lcamtuf.coredump.cx/
http://lcamtuf.substack.com/
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
http://www.openwall.com/lists/oss-security/2014/09/25/13
http://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
http://lcamtuf.blogspot.com/2014/09/quick-notes-about-bash-bug-its-impact.html
http://ftp.gnu.org/gnu/bash/bash-4.3-patches/bash43-026
https://lcamtuf.blogspot.com/

On the same day, Todd Sabin and Florian Weimer have independently bumped into a static
array overflow in the parser (CVE-2014-7186). The bug manifested in what seemed to be a
non-exploitable crash, trying to dereference a non-attacker-controlled pointer at an address
that "by design" should fall well above the end of heap - but was enough to cast even more
doubt on the robustness of the underlying code. The test for this problem was pretty simple -

you just needed a sequence of here-documents that overflowed a static array, say:

<b <<c <<d <<e <<f <<g <<h <<i <<j <<k <<1 <<m; }' bash -c :

Florian also bumped into an off-by-one issue with loop parsing (CVE-2014-7187); the proof-of-
concept function definition for this is a trivial ror loop nested 129 levels deep, but the effect
can be only observed under memory access diagnostics tools, and its practical significance is
probably low. Nevertheless, all these revelations prompted him to start working on an
unofficial but far more comprehensive patch that would largely shield the parser from

untrusted strings in normally encountered variables present in the environment.
In parallel to Tavis' and Florian's work, | set up a very straightforward fuzzing job with
american fuzzy lop. | seeded it with a rudimentary function definition:

() { foo() { foo; }; >bar; }

...and simply let it run with a minimalistic wrapper that took the test case generated by the

fuzzer, put it in a variable, and then called cxccve () to invoke bash.

Although the fuzzer had no clue about the syntax of shell programs, it had the benefit of
being able to identify and isolate interesting syntax based on coverage signals, deriving
around 1,000 other distinctive test cases from the starting one while "instinctively" knowing
not to mess with the essential "() {" prefix. For the First few hours, it kept hitting only the
redirect issue originally reported by Todd and the file-creation issue discovered by Tavis - but
soon thereafter, it spewed out a new crash illustrated by this snippet of code (CVE-2014-
6277):

This proved to be a very straightforward use of uninitialized memory: it hit a code path in
make redirect () where one field in a newly-allocated reo1r struct - here doc eof - would not

be set to any specific value, yet would be treated as a valid pointer later on (somewhere in

copy_redirect U).
Now, if bash is compiled with both --cnabie-bash-nalioc and --enable-mem-scramble, the
memory returned to nake redirect () by xmailoc () will be set to oxar, making the pointer

always resolve to oxdrararar, and thus rendering the prospect of exploitation far more
speculative (essentially depending on whether the stack or any other memory region can be
grown by the attacker to overlap with this address). That said, on a good majority of Linux
distros, these flags are disabled, and you can trivially get bash to dereference a pointer that is

entirely within attacker's control:

HTTP_COOKIE="() { x() { _; }; x() { _; } <<'perl -e '{print "A"x1000}'"; }" bash -c :
bash[25662]: segfault at 41414141 ip 00190d96 sp bfbe6354 error 4 in libc-
2.12.50[110000+191000]

The actual fault happens because of an attempt to copy nere doc eof to a newly-allocated

buffer using a C macro that expands to the following code:

strepy (xmalloc(l + strlen(redirect->here_doc_eof)), (redirect->here_doc_eof))

This appears to be exploitable in at least one way: if nere doc ot is chosen by the attacker to
point in the vicinity of the current stack pointer, the apparent contents of the string - and
therefore its length - may change between stack-based calls to «ma1ioc () and strepy () asa
natural consequence of an attempt to pass parameters and create local variables. Such a mid-

macro switch will result in an out-of-bounds write to the newly-allocated memory.

A simple conceptual illustration of this attack vector would be:

char* result;

int len_alloced;
main (int argc, char** argv) ({

/* The offset will be system- and compiler-specific */;

char* ptr = &ptr - 9;

https://code.google.com/p/american-fuzzy-lop/

result = strcpy (malloc(100 + (len_alloced = strlen(ptr))), ptr);

printf ("requested memory = %d\n"

"copied text = %d\n", len_alloced + 1, strlen(result) + 1);

When compiled with the -O2 flag used for bash, on one test system, this produces:

requested memory = 2

copied text = 28

Of course, the result will vary from system to system, but the general consequences of this
should be fairly evident. The issue is also made worse by the fact that only relatively few
distributions were building bash as a position-independent executable that could be fully

protected by ASLR.

(In addition to this vector, there is also a location in d:spose cmd.c that calls tree () on the

pointer under some circumstances, but | haven't really really spent a lot of time trying to
develop a functioning exploit for the '77 bug for reasons that should be evident in the text

that follows... well, just about now.)

It has to be said that there is a bit less glamour to such a low-level issue that still requires you
to go through some mental gymnastics to be exploited in a portable way. Luckily, the fuzzer
kept going, and few hours later, isolated a test case that, after minimization, yielded this gem
(CVE-2014-6278):

HTTP_COOKIE='() { _; } >_[$($())] { echo hi mom; id; }' bash -c :

I am... actually not entirely sure what happens here. A sequence of nested s. .. statements
within a redirect appears to cause the parser to bail out without properly resetting its state,
and puts it in the mood for executing whatever comes next. The test case works as-is with
bash 4.2 and 4.3, but not with more ancient releases; this is probably related to changes
introduced few years ago in bash 4.2 patch level 12 (xparse dolparen()), but I have not

investigated if earlier versions are patently not vulnerable or simply require different syntax.

The CVE-2014-6278 payload allows straightforward "put-your-commands-here" remote code
execution on systems that are protected only with the original patch - something that we

past few days.

Well, that's it. | kept the technical details of the last two findings embargoed for a while to
give people some time to incorporate Florian's patch and avoid the panic associated with the
original bug - but at this point, given the scrutiny that the code is under, the ease of
discovering the problems with off-the-shelf open-source tools, and the availability of

adequate mitigations, the secrecy seems to have outlived its purpose.

Any closing thoughts? Well, I'm not sure there's a particular lesson to be learnt from the
entire story. There's perhaps one thing - it would probably have been helpful if the
questionable nature of the original patch was spotted by any of the notified vendors during
the two-week embargo period. That said, | wasn't privy to these conversations - and hindsight
is always 20/20.

11 comments:

Chris October 01,2014 3:17 PM

Can you make any comment as to where 4.3 u28 fits into this whole situation? | was under the impression
from previous comments here (and elsewhere) that 4.3 u27, posted by Chet this past Saturday after the
various redhat updates, resolved all six of the currently-known Bash CVEs (including CVE-2014-7186 and
CVE-2014-7187.) As such, | am surprised to see 4.3 u28 being released, especially with no accompanying
updates from redhat since the 26th. Just trying to figure out how 4.3 u28 fits in and whether it specifically
addresses any CVEs, since | had (perhaps incorrectly) surmised that 4.3 u27 resolved/mitigated these
various CVEs being discussed.

Reply

Michal Zalewski October 01,2014 4:58 PM

4.3.27 does not resolve all known issues, but adopts Florian's mitigation that shields the parser from
untrusted inputs in normal use cases. The subsequent patch (28) actually eliminates CVE-2014-7186 and
CVE-2014-7187, but with patch 27 in place, they do not pose a security risk. Two more to go, probably in
patch 29.

Reply

~ Replies

Unknown October 02,2014 6:04 AM
4.3.28 canresolve all 6 issues ? thanks very much

http://code.google.com/p/tmin/
http://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
http://www.pcworld.com/article/2688932/improved-patch-tackles-new-shellshock-attack-vectors.html
javascript:;
https://www.blogger.com/profile/17621245117904138662
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412201822785#c5979153687833863233
javascript:;
https://www.blogger.com/profile/07964553034419471588
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412207913134#c967677508277435137
javascript:;
https://www.blogger.com/profile/12397515067077639085
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412255083245#c8296121984357333734

Chris October 02,2014 6:05 AM

Thanks Michal! | assume that when you refer to Bash needing to update to resolve two more
CVEs, you are referring to CVE-2014-6277 and 6278, correct?

Unknown October 02,2014 7:48 PM
Bash 4.3.29 released on 10.2, | think this can resolve all of 6 issues, hope | am right
Reply

jul October 01,2014 6:50 PM
if you can't be totally sure how that beast is doing, | am pretty scared.

Reply

~ Replies

Rich Neswold October 02,2014 3:43 PM
Exactly. The lesson here, for me, is that I'm not getting enough bang-for-the-buck out of bash

to warrant the security risks. I'll simply uninstall it from my systems.
Reply

Unknown February 21,2015 7:53 PM
Hello everyone, just a quick question...

My impression is that scanning applies to known vulnerabilities, fuzzing is for discovering new ones, and
the term "testing" can apply to both. Is that correct?

-Rick
Reply
~ Replies
Michal Zalewski February 21,2015 9:27 PM
Broadly speaking, sure.
Reply

Unknown February 23,2015 3:44 PM

..here's a very recent exploit that appears to be related to Shellshock.. | just think the
survivability(undetectability) and evolution of these exploits is remarkable...

https://securityblog.redhat.com/2015/02/23/samba-vulnerability-cve-2015-0240/

any thots? thanks-in-advance!

Reply

~ Replies
Unknown February 24,2015 4:40 AM
apologies, in my post above, i meant to link to this article,
https://securityblog.redhat.com/2014/09/24/bash-specially-crafted-environment-variables-
code-injection-attack/
thanks again for any insights...

Reply

To leave a comment, click the button below to sign in with Google.

SIGN IN WITH GOOGLE

Note: Only a member of this blog may post a comment.

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/09/bash-bug-apply-unofficial-patch-now.html
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://lcamtuf.blogspot.com/
https://lcamtuf.blogspot.com/feeds/9002736326250250918/comments/default
https://www.blogger.com/profile/17621245117904138662
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412255103029#c1168636859167586583
https://www.blogger.com/profile/12397515067077639085
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412304536860#c8992052139197759474
https://www.blogger.com/profile/06120175983940571527
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412214638254#c7274258578907269219
javascript:;
https://www.blogger.com/profile/12513191030452235173
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1412289805527#c8312116213626864674
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424577239329#c5162343933648639829
javascript:;
https://www.blogger.com/profile/07964553034419471588
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424582828904#c773357756009867499
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424735080391#c8294397616940202077
javascript:;
https://www.blogger.com/profile/11410503547692026880
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html?showComment=1424781635521#c3310038926539598114

