1605.09193v2 [cs.CR] 31 May 2016

arxXiv

Bitcoin’s Security Model Revisited

Yonatan Sompolinsky! and Aviv Zohar®?

1 School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel
2 Microsoft Research, Herzliya, Israel
{yoni_sompo, avivz}@cs.huji.ac.il

Abstract. We revisit the fundamental question of Bitcoin’s security
against double spending attacks. While previous work has bounded the
probability that a transaction is reversed, we show that no such guaran-
tee can be effectively given if the attacker can choose when to launch the
attack. Other approaches that bound the cost of an attack have erred
in considering only limited attack scenarios, and in fact it is easy to
show that attacks may not cost the attacker at all. We therefore pro-
vide a different interpretation of the results presented in previous papers
and correct them in several ways. We provide different notions of the
security of transactions that provide guarantees to different classes of
defenders: merchants who regularly receive payments, miners, and re-
cipients of large one-time payments. We additionally consider an attack
that can be launched against lightweight clients, and show that these
are less secure than their full node counterparts and provide the right
strategy for defenders in this case as well. Our results, overall, improve
the understanding of Bitcoin’s security guarantees and provide correct
bounds for those wishing to safely accept transactions.

1 Introduction

Users of the Bitcoin system [J] rely on the irreversibility of monetary transfers
when using the currency. In particular, merchants that accept bitcoins, must
be assured that once a payment has been accepted, it will not be reversed or
routed to a different destination, and that they can safely dispense products and
services in exchange for the funds.

Payments may be rerouted or canceled if, for example, an attacker tries to
send two conflicting transaction requests to the system in an attempt to send
the same funds to two different destinations. The system cannot allow money
to be used twice and thus one of the two conflicting payments must be rejected
eventually. It is important that the recipient of the canceled payment is not
fooled into thinking he has received the payment in the interim. Such an attack
is called a double spending attack. Indeed, Bitcoin’s most important innovation
is its solution to this very problem.

Bitcoin’s core data structure — The Blockchain — contains a record of all
transactions that have been accepted by the system. Each block is a batch of
accepted transactions that contains additionally the cryptographic hash of its

http://arxiv.org/abs/1605.09193v2

predecessor in the chain, as well as a cryptographic proof-of-work. Blocks are
created by nodes that solve this proof-of-work and in return collect fees from
transactions embedded in their block and from newly minted money as well.
These nodes are often called miners.

In case several chains form, due to the concurrent action of miners, Bitcoin
nodes accept the longest chain as the record of transactions that have occurredE
and ignore transactions not contained in this chain. This re-selection of the set
of accepted transactions may cause some payments to be canceled, which may
be abused by an attacker. To be secure against such double spending, merchants
are advised to wait until their transaction is included in a block, and that several
blocks are built on top of it. The more blocks built atop a given block, the less
likely it is that a conflicting longer branch will form (even under deliberate at-
tempts). For a transaction embedded in a block, the block containing it, and each
block that follows on the main chain, is counted as an additional confirmation.

Satoshi in his original work [9], as well as additional works that follow [TTIT3//6],
offer a guarantee of the security of transactions in the currency. Specifically, each
provides a similar theorem of the following “flavour”:

Theorem 1 (informal). As long as the attacker holds less than 50% of the
computational power, and all honest nodes can communicate quickly (compared
to the expected time for block creation), the probability of a transaction being
reversed decreases exponentially with the number of confirmations it has received.

This work is motivated by the following argument against any such guarantee:
If the attacker is allowed to choose the time it prefers to transmit the transaction,
no probabilistic guarantee can be given that its attack will fail. Indeed, the
attacker may try to create blocks prior to the the transmission of transactions,
in a preparatory stage that we term pre-mining. The pre-mining stage may take
a long while to succeed, but once it does, an attack can be carried out with
success-probability 1A Figure [illustrates such an attack.

It is important to note that the pre-mining stage need not be costly to an

attacker. In fact, attackers that employ selfish mining strategies [4T2[10] repeat-
edly create secret chains that are longer than those of the network and which
can be additionally used to launch double spending attacks, and in fact gain
as they do so (provided that the attacker is sufficiently well connected to the
network [4], or if delays exist [12]).
Our contributions. We discuss two pre-mining attacks that can be used when
the attacker can choose the timing of the transaction: One attack is a generaliza-
tion of the Finney attack [5], and the other is a generalization of the (somewhat
lesser known) Vector76 [14] attack. The first can be used effectively against any
node, whereas the second, against nodes that do not broadcast blocks such as
lightweight clients that do not maintain a full copy of the blockchain.

3 In fact the chain representing the highest cumulative amount of computational power
is chosen. This is usually the longest chain.

4 The attacker may, alternatively, settle for fewer blocks during the pre-mining stage,
and then carry out an attack with lower probability.

We propose four different versions of security guarantees (for regular nodes),
given that pre-mining may in general take place:

1. Defending an independently generated transaction (one whose timing does
not rely on the attacker)

2. Defending the long-term fraction of lost transactions to the merchant

. Defending all transactions from ever being double spent

4. Upper bounding the average profit of the attacker during a continuing attack

w

We formalize these notions in Section 2l We then introduce three families of
acceptance policies, 0%, g/7%¢ and o*°' that provide a defense of according
to guarantees above.

With respect to the bound on the profit of attackers, we show that, indeed,
attackers with enough mining power (still under 50%) or superior networking
capabilities can profitably launch double spending attacks, even when selfish
mining schemes alone are not profitable to them.

The first guarantee above most closely matches the flavour of the theorem
given by Satoshi [9] and following works. We provide a corrected analysis that
better accounts for pre-mining in this case, and maintains the general exponential
decay. We highlight that this result is of slightly lesser use, as in most cases,
attackers can easily control the timing of an attack: a buyer, for example, can
choose the exact moment at which it enters a store to buy items, since merchants
usually provide continuous service.

As it is impossible to bound well below 1 the probability that a transaction
timed by the attacker will succeed, or to bound the cost for an attacker, we
suggest the second security guarantee as an effective upper-bound on the losses
experienced by a merchant who regularly transacts with the currency. This guar-
antee corresponds to a “safety-level” strategy for a merchant who wishes to en-
sure that only a small fraction of his accepted payments are double spent. Here,
we compute the optimal attack for every given policy of the merchant and thus
compute its exact safety level.

The third model best applies to large valued transactions whose introduction
to the blockchain may have been selected at the convenience of the attacker. We
show that waiting for a fixed number of confirmations does not provide adequate
security in this case. To circumvent this, we provide a policy that requires a
number of confirmations logarithmic in the length of the chain, and prove that,
with high probability, no transaction will ever be attacked when sticking to
this policy. The downside of this policy is of-course the fact that the number of
confirmations that it requires grows (albeit incredibly slowly), as time goes on.

We now elaborate more on pre-mining attacks and why they pose a risk for
a merchant that receives a transaction that was broadcast at a timing selected
by the attacker.

1.1 Pre-mining and selective attack timings

Consider the following attack scheme against a defender that waits for k£ confir-
mations: In the pre-mining phase, the attacker begins to work on a secret branch

Honest | <— < | €— €< e | _
Nodes
Attacker F---f---4L&2 f e S | EZ70 | S i I

~ (time >

1 . 2 ‘Attacker falls behind 3 Attacker leads by 2. 4 tx; has 1 3 Publish secret
Attack begins B " : X
& resets Transmits tx; confirmation chain

As the attack begins the attacker starts working on a secret chain with txo inside its
first block (1). If the attacker’s chain is shorter than the honest nodes’, the attacker
gives up and restarts the attack (2). The attacker manages to gain a lead of 2 blocks
(3). He then transmits the transaction he wishes to double spend which is included in
a block (4). The transaction now has enough confirmations (1-conf) and the attacker
collects his rewards. He then publishes his secret chain and successfully double spends
(5). Notice that once the pre-mining stage is concluded, the attack succeeds with
probability 1, so miners that see tx1 that is only broadcast then will always lose the
funds.

Fig. 1. The progression of a pre-mining attack on a 1-confirmation defender

that splits off from the most recent version of the chain. He embeds transaction
txo in this chain that conflicts the transaction ¢x; he wishes to double spend. If
the attacker manages to create k -+ 1 blocks more than the network, then he pro-
ceeds to carry out the attack. If at any point in time the network’s chain is longer
than the attacker’s, he resets and starts a new branch, spiting off at a higher
block in the public chain. Notice that this phase is in fact performed silently,
and repeats until he is successful. Once the attacker holds k£ + 1 more blocks
than the network’s chain, he broadcasts his transaction to the network (when a
large enough fee to ensure he is included in the next block), and waits for he to
gain k confirmations. It then releases his chain which is adopted immediately by
the network, and invalidates the transaction tx;.

Observe that since the attack is only visible if the attacker is going to win, the
recipient of funds can never be safe—conditioned on seeing the transaction, the
attack succeeds with probability 1. More sophisticated schemes are possible, and
will be discussed throughout this paper. The restricted version of this attack for
a O-confirmation defender is simply known as The Finney Attack (named after
its discoverer, Hal Finney, one of Bitcoin’s first adopters). The key point in these
pre-mining attacks is that they are not carried out at an “arbitrary” moment
in time, but rather at a moment selected by the attacker. This leads us to the
natural question: In what sense then is Bitcoin secure against such attacks?

1.2 Guarantees

We consider three main scenarios that a recipient of funds may face:

1. Protecting an independently placed transaction. Here we assume a
transaction has been placed in a block independently of the actions of the at-
tacker. One example of such a transaction is a minting transaction (also known
as a coinbase transaction) that the recipient may wish to accept. In this case,
the attacker could not have chosen to launch the attack once he is successful in
a pre-mining stage, but may still have pre-mined blocks [

2. Protecting a large fraction of blocks Here we consider a merchant that
regularly receives payments in the blockchain and wishes to upper bound the loss
he may suffer due to an attacker. We wish to find the attack policy that maxi-
mizes the fraction of blocks that are accepted by the network and then removed
from the chain by the attacker. We note that a single double spending attack in
which a long attack chain is released may remove many blocks simultaneously,
thus this case differs from the previous one. An additional difference is that, in
this case, attackers must actively decide when to give up on the attack on a
specific block if the odds are not in his favour so that he may attack other more
recent blocks instead. Such restarts are not considered when protecting a single
transaction.

We show here, as well, that waiting for a fixed number of confirmations which
is a function of € can provide any level of security.

3. Protecting all accepted blocks In this case we consider a merchant that
wishes to receive funds for a transaction at a moment in time that is possibly
selected by the buyer. Given that the attacker can choose to place his transac-
tion inside a block once he already knows he is certain to succeed, the only way
to be fully secure in such cases is to find a policy for accepting transactions that
never accepts a block that will be double spent. As we have already discussed
above, it is impossible to be secure against such a scenario by waiting for a fixed
number of confirmations. While it is trivial to solve this problem by holding off
acceptance of transactions indefinitely, we present a policy that guarantees that
no block can be double spent which fails only with arbitrarily low probability
¢, and requires a logarithmic number of confirmations in 1/¢ and the length of
the chain. While waiting times that depend on the length of the chain and may
grow are somehow unsatisfactory, we note that growth is extremely slow. Still,
we believe that this is the main model that needs to be considered when dealing
with extremely large transactions (e.g., when sums that are equivalent to tens of
millions of USD are sent — as was the case with several large bitcoin transactions
like the FBI’s seizure of the SilkRoad funds back in 2013).

® This is the scenario that most closely matches previous results in [I39IT16], although
each work has analyzed it slightly differently. In this paper we augment the analysis
with a proper quantification of the attacker’s pre-mining.

1.3 Related Work

The first analysis of the resilience of Bitcoin is due to Nakamoto [9]. His analysis
considers a double spending attack without pre-mining, and is only approximate.
Rosenfeld later goes on to correct the analysis [11], and includes the pre-mining
of a single block before it is launched (as such, it is not an attack against an
arbitrarily chosen block). Rosenfeld further argues that the cost of an attack
grows exponentially (which is correct as long as no block withholding is per-
formed). Lewenberg et. al. [§] also consider the exponential cost of the simple
hidden-chain attack.

In a previous work [I3] we have extended the analysis of security for set-
tings with delay, demonstrating that the security of Bitcoin declines as delays
increase and bounding its resulting throughput. We additionally present a time-
dependent acceptance policy, applicable for the longest chain rule, that is more
secure than purely structural policies (and as a result is faster to accept for a
given level of security). In this work we restrict ourselves to structural policies, as
it is not always guaranteed that the recipient remains online to time the creation
of blocks.

Garay et. al. [0] provide a formal model for the core of the Bitcoin protocol,
using a discrete time setup where blocks can be found simultaneously at each
step. They define desired properties of a blockchain protocol, and prove that they
are satisfied by Bitcoin, when the attacker is adequately bounded. They derive
asymptotic bounds for security (and not an explicit formula). Their analysis
assumes the transaction to defend is available to all honest nodes, and hence too
roughly corresponds to an attack on an independently chosen block.

Karame et.al. [7] and Bambert et. al. [2] have both considered double spend-
ing O-confirmation payments. The simplest pre-mining attack which applies to
such payments is known as the Finney attack [5].

Eyal and Sirer [4] suggested and analyzed a particular attack that knocks
out blocks of the network in order to gain more from mining. Sapirshtein et.
al. [I2] improved the attack to optimal policies. This work uses these techniques
to analyze optimal double spending strategies.

2 The model

We adopt the original setup analyzed by Satoshi Nakamoto, and later by Rosen-
feld, that has become a standard model of Bitcoin’s operation at the bound
where block creation rates are much higher than the propagation time of blocks.

Miners in the Bitcoin network create blocks with exponential inter-arrival
times, with parameter A (in Bitcoin, lambda is 1/600 blocks/second)ﬁ Unless

6 Xis in fact controlled via the difficulty of the proof-of-work that is embedded in each
valid block, and the exponential inter-arrival time is a good approximation given
that the proof-of-work is based on guessing inputs to a cryptographic hash function
that will cause its output to land within some narrow range. This process is nearly
memoryless.

otherwise stated, we assume that honest nodes remain connected and can always
communicate, and that the mining rate A remains constant over time.

Each block contains a reference to a single predecessor block (a cryptographic
hash). The entire history of blocks created up to time ¢ forms thus a tree, which
we denote by T*. Nevertheless, the Bitcoin protocol dictates that the valid his-
tory of transactions consists of (transactions in) the longest chain of blocks alone.
Accordingly, we assume honest participants only keep track of the longest chain
they have been presented with, and do not maintain the entire tree structure.
We further assume that blocks propagate in the network very fast relative to
1/A, and under this assumption the honest network’s chain at every point ¢ in
time is uniquely determined; we denote it by C* = (Cé, Ct,CL CL, C,’ieight(t)
(height(t) is thus the length of the honest chain at time ¢). The block Cf is a
unique predetermined block that any chain must have at its root, and it is also
called the genesis block. The height of a block b is its distance from the genesis
(with height (C}) = 0). We denote by past (b) (future (b)) the set of blocks that
precede (succeed) b in the chain; note that future (b) keeps developing in time,
as long as b € C*.

The attacker is assumed to own an « fraction of the computational power,
and the rest (1—«) is owned by honest nodes. Thus, the attacker creates blocks at
arate of -\, and the honest participants at a rate of (1 —«)- . Following [121/4],
we assume that the attacker has some communication capabilities that may allow
it to transmit blocks that it has prepared in advance to nodes, just as the honest
participants are starting to propagate a block that they have created. We denote
the fraction of nodes that receives the attacker’s block in this case by v € [0, 1].
If v = 0, the attacker always loses block transmission races, and if v = 1 he wins
them and is in fact able to get his block first to all honest miners.

Bitcoin nodes that participate in block creation efforts are called miners.
Upon mining a block, the miner embeds in it a set of Bitcoin transactions,
created by users of the system. The transactions in b must not double spend
transactions in past (b).

2.1 The acceptance policy

A merchant is any recipient, or beneficiary, of a Bitcoin transaction. Upon re-
ceiving a bitcoin transaction, the merchant considers it as either accepted (in
case which it releases the good or service paid for), or not accepted—the latter,
if it is not sufficiently convinced that it will remain forever in the longest chain.
To decide this, the merchant, or “defender”, uses an acceptance policy. We re-
strict our attention to acceptance policies that use only structural information
that is available to a merchant that was offline, namely, the current chain C?.
We further assume that the defender is currently connected to the honest nodes,
and is not isolated by an attacker.

We define “the acceptance policy” of the defender as a function oo ~ : N — N.
The function takes as input the height of the block containing the transaction,
and returns the number of blocks that must be on top of it (including itself, i.e.,

| future (b)|+1) before accepting the transaction. These blocks are often referred
to as confirmations. Thus, if the merchant sees a block b, and future (b) +1 =
oq(h(b)), then the transaction is considered accepted.

Perhaps the most commonly used policy for accepting transactions is the
constant policy o4.~(h) = k that requires a certain number of confirmations,
independently of the location of the transaction in the chain. The number of
confirmations, k, is often expressed as a function of « (and in our case vy as well)
to ensure the security of the chain. Our modeling, which allows for dependency
on the block’s height, will be justified in Section [l

2.2 The attack policy

We follow [12] and define the attacker’s policy as a function that determines
the action of the attacker at every possible state. The attacker is assumed to
be building a secret branch of the chain which he will use to later override the
honest network’s current chain. The attacker may take one of several actions:

— adopt— it abandons its attack, and its future chains will contain the tip of
the honest network’s current chain.

— override— it overrides the honest network’s current chain by publishing a
strictly longer chain.

— match— it publishes a chain of the same length as the honest network’s
current one.

— wait— the null action which waits for future events (i.e., block creations)

2.3 Security properties

We define three robustness notions that correspond to the different security guar-
antees suggetsed above. For a block b, and acceptance policy o, the event where b
is accepted by o is given by Eccepted(b) := {Tt : b= C} A height(t) > h+ o(h)}.
Denote by timegcceptea(b) the time at which Egeceptea(b) first occurred, with
timegccepted(b) = 00 if it never has occurred. The event where it is later removed
from the longest chain is Eqtracked(b) = {3s : timegecepteda(b) < s < 00,b ¢ C°}.

Definition 1 An acceptance policy o4, is e-arbitrary-robust, or robust against
an attack on an arbitrary transaction, iff for any fived height h and t such that
height(t) > h, for any attacker with parameters « and v, and under any attack
policy wa:

Pr (5attacked(c;§) | 5accepted(c}tl)) < €. (1)

Definition 2 An acceptance policy o ~ is e-fractional-robust, or robust against
a removal of non-negligible portions of blocks, iff for any attacker with parameters
« and 7y, and under any attack policy wa:

. ZbETt Pr (gattacked(b))
tlggo height(t) =€ @

Definition 3 An acceptance policy o4, is considered e-totally-robust, or re-
silient to a double spend anywhere in the chain, iff for any attacker with param-
eters a and vy, under any attack policy ma:

Pr(3b e T : Eattacked(b)) < €. (3)

In this paper, we introduce three families of acceptance policies, ", g/m%¢,
and ot°' that are e-arbitrary-robust, e-fractional-robust, and e-totally-robust,
respectively, for any € > 0.

3 Defending independently generated transactions

In this section we find policies that can be used by a defender to guarantee
that transactions cannot be double spent, assuming that their timing cannot be
controlled by the attacker. We show a strategy that waits for a constant number
of confirmations (depending still on « and €) which is e-arbitrary-robust. In
our analysis we fix some flaws in analysis done in previous works, specifically, we
more precisely account for blocks mined before the attack. Under the assumption
that the attacker was not involved in selecting the time at which the transaction
appeared in the blockchain C!, we are able to provide a distribution over the
number of blocks that it has prepared in advance and on any lead that it may
have relative to the network (as it could not have conditioned the payment on
some rare event). It is then possible to analyze when this transaction could
be considered effectively irreversible. This guarantee is applicable, for example,
when the transaction is a minting transactions, whose timing is determined by
the time at which the miner created a block.

For the moment, we focus our analysis on the case v = 0. We define an

acceptance policy o2 = agfg as follows:

Definition 4 Let 0% ;= min{n € N: f(n,a) < €},

where
e :_gll_—za(lfa)l' (4)
et
S (" W)

arb
«

Theorem 2. For all € > 0, the policy c&"° is e-arbitrary-robust.

Proof. Let b= C} such that len(t) > h. Let C""* be the longest chain in the pub-
lished tree up to time ¢, and let C97%*® be the longest chain in the entire tree, in-

cluding secret attack-blocks. For any z € CP* put R7 := | future (z) N CPracte \ ¢Peb

and Qf := ‘future (2)N Cf”b‘. We call max__.puw { R}, — Qf } the pre-mined gap
t/
of the attacker at time ¢'. In Lemma [3] we show that a random variable Y with

distribution vector Pr(Y =n) = 1222 . (-2} stochastically dominates (first-

l—o l—o

order) the distribution of the random variable max_. ruw {R}, — Q }. Now, a
t/

necessary condition for a successful attack is that, above some z € past (b), the
attacker has managed to create a chain which is longer than the published chain
above z by the time when the attack is released (i.e., when the secret blocks are
published). Therefore, the maximal pre-mined gap of the attacker over a block
z € past (b), by time(b), can be upper bounded by a random variable with the
distribution (p,). Since the creation of b’s predecessor, the attacker’s gap over
any z € past (b) follows an ordinary random walk with drift towards negative
infinity (with different 2’s in past (b) corresponding to possibly different starting
points, all bounded together by (p,,)). The probability that the attacker advanced
m blocks during the period at which the honest network created n confirmation-
blocks is given by (™*"7") . (1 — a)" - a™. The event in which the attack will
succeed is then equivalent to the event that the walk will ever arrive at X = —1
(here we used the restriction to v = 0). For a given pre-mined gap of size [, this

m—n—I+1
) ,if

m < n—1 (this can be derived, e.g., using a martingale method. See also in [I1]).
Altogether, we have thus shown that f(n,a), as defined in Equation F] upper
bounds the probability that b will ever be reversed.

happens with probability 1, if m > n—1[, and with probability (ﬁ

Lemma 3 For a fized time t',

a n
S —Q7 > < .
re{ 1 - 2n) < (725)

Proof. 1f an attacker aims to maximize the value of max__ crue {R; — Q} Y}, then

its optimal strategy is as follows: It begin mining at time ¢ = 0, right after the
creation of the genesis block, and whenever n;, < n, it performs adopt, resetting
the attack above the tip of n,. To see that this is optimal, simply observe that
if the honest network has a positive lead over the attacker at time ¢, then by
adopting 2, the attacker will have at least as high as a gap (i.e., R} — Q})
over z = 2, than it would have had above any other z € past (z;;,) had it not
adopted 2.

Consider now a random walk on the non-negative integers with a reflecting
barrier at the origin: At position k, the probability to move one step to the right
is «, and to the left is (1 — «). At the origin, the probability to move to the
right is a and to stay in place is (1 — «). the transition probability matrix P is
accordingly. Denote by Y,, := Z?:o X; the location of the walk after n steps were

n
made. The stationary distribution of the process (Y;,) is p, := (11’_2(;‘) : (ﬁ) ,
because if Y is the distributed according to the limiting distribution then, for

n > 0:

Pr(Y=n)=(1-«) -Pr(Y +1)+ Y=n-1)=

n+1
o
(1—a) ppp1t+a-pp1=01—-a)- () ()
—« 1 -«

1-2-« o 1-2-a
—|—a~(1—a> (1—a) < a) 1-a P
and for n = 0: Pr(=0)=(1-a)-Pr(Y=0)+(1—a«a) -Pr(Y =1), implying
Pr(Y =0) = 7= = po.
Denote by tZ the creation time of the ith block in C{m*“'¢. We claim that
max, - cpus {Rfm - Qfﬁ} has the same probability distribution as Y;. We prove it

by an induction on i. For ¢ = 0, {5 = 0. At time 0, following the creation of
the genesis block, the value of max__ pus {R; — Qi } = (Rgenem - Q‘genem)
tq, 2 k2

is 0, as }future (genesis) N C’gmcze| = 0; and likewise Yy = 0. Assume we have
proved this for ¢, and we now prove it for ¢ + 1. With probability «, the attacker
creates the block at time #;11. In that case, it increases by 1 R;, — Qj, for every
z € CZ”b, and in particular MaX, ¢ cpus {R; — Qf } increases by 1; likewise, Y;
increases by 1 with probability «, since this is the probability of the (i + 1)th
step being towards positive infinity. With probability (1 —«), the honest network
created the (i + 1)th block. In that case, R}, — Q7. decreases by 1 for every block
z € C’,ZUb, whereas for the new block, th:i“ - Q:"“ = 0—0=0. Thus, the value
of max_ o {R; — Qj} is the maximum between max__ o {R; — Qi } -
and 0. Similarly, if ¥; > 0 then with probability (1 — «) the (i + 1)th step is
towards negative infinity decreasing its value by 1, whereas if Y; = 0 then with
probability (1 — a) the value of Y; remains 0 at te (i + 1)th step.

As argued above, the attacker does not lose anything from beginning its at-
tack above the genesis block (recall its aim is to maximize the success-probability
and not to minimize costs). Moreover, the process (Y;,) forms an ergodic process:
It is aperiodic because at the origin there’s a positive probability to stay in place,
and it is positive recurrent since the walk has a positive biased towards negative
infinity. Moreover, it can be shown that the stationary distribution of this process
stochastically dominates (first-order) the distribution of Y = (Y,,): Pr (Y =n) =

n k
(11—72(;1)(%) . In particular, Pr (maxzeczub {R; —Qi}> n) < (11:2&") S (ﬁ)

n

«
(%) -

Note that the analysis above assumed v = 0, as the success probbaility of an
attack in case of a tie was given by 2. The bound can be generalized to be
valid for all v > 0 by waiting for an add1t10na1 confirmation. This completes the
description of the family U‘"b

The formulas provided in the definition of ¢2" do not give a good feel for the
security for the results. Following [ITI9], we present the results in a table for some

representative values. Table [illustrates the number of confirmations needed for
an attacker of various sizes. This is to be contrasted with the table appearing
in [I1], where the author assumed a constant pre-mining of 1 block before the
transaction is transmitted (thus the analysis there is not of an arbitrarily timed
transaction).

Table 1. The probability of a successful attack on an arbitrary block (e — arbitrary —
robustness), given the attacker’s hashrate (a) and the number of confirmations the
acceptance policy waits for (conf). The calculation includes consideration for pre-
mining.

a\conf] 1 2 3 4 5 6 7 8 9 10
2% 10.24% [0.02% | ~0% | ~0% | ~0% | ~0% | ~0% | ~0% | ~0% | ~0%
6% 2.16% | 0.42% | 0.09% | 0.02% | ~0% | ~0% | ~0% | ~0% | ~0% | ~0%
10% |5.98% | 1.85% | 0.60% | 0.20% | 0.07% | 0.03% | ~0% | ~0% | ~0% | ~0%
14% 111.66%| 4.88% | 2.11% | 0.93% | 0.42% | 0.19% | 0.09% | 0.04% | 0.02% | ~0%
18% [19.13%] 9.94% | 5.32% | 2.90% | 1.60% | 0.89% | 0.50% | 0.28% | 0.16% | 0.09%
22% 128.27%|17.33%(10.89%)| 6.95% | 4.48% | 2.91% | 1.91% | 1.25% | 0.83% | 0.55%
26% 138.90%(27.17%]|19.36%(13.97%|10.17%| 7.45% | 5.49% | 4.06% | 3.01% | 2.23%
30% [50.70%)39.33%(30.98%(24.64%[19.73%(15.88%(12.84%(10.41%| 8.46% | 6.89%
34% 163.23%|53.37%(45.55%(39.14%(33.81%(29.31%(25.49%(22.21%(19.39%|16.95%
38% |75.80%68.45%|62.25%56.85%|52.09% |47.85%44.03% |40.58%|37.45%|34.56%
42% |87.35%|83.09%]79.31%|75.86%|72.68%(69.72%|66.95% |64.33%|61.83%(59.44%
46% 196.26%(94.88%193.61%(92.41%(91.27%(90.17%|89.10% |88.05%|86.99% | 85.82%
48% 198.98%(98.59%198.23%(97.88%97.54%(97.21%]|96.88%(96.54%|96.15%|95.60%
50% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%

4 Defending the long-term fraction of double spent
transactions

In this section we focus on finding the level of fractional-robustness of policies
aéﬁw that wait for some given constant number of confirmations. We investigate
what fraction of all blocks that the policy accepts are later overridden.

The robustness of agifgc is not derived analytically, but is rather computed
by an algorithm that finds the optimal attack policy. To compute the optimal
attack, we follow the technique introduced in [12], that encodes the decision
problem of an attacker as a sequence Markov Decision Problems (MDPs). These
then encode the action that the attacker takes at each state: for every length
of attacker chain n, and length of honest chain nj (measured from the block
they fork at), the attacker needs to decide whether it continues to build atop his
chain, abandons his efforts and starts a new fork, or publishes blocks to succeed
by one (or, with less success-certainty, match) the length of the network’s chain

thereby overriding it (provided he has enough blocks to do this). The transition
and reward matrices are summarized in Appendix [Al

The main difference from the algorithm presented in [12] is that the latter
used this technique to compute optimal selfish mining attacks, and to maximize
the number of attacker blocks in the chain. In contrast, we reward the attacker
differently (as its objective here is different): The attacker is rewarded 1 unit for
every successful block that the network accepted (i.e., had enough confirmations)
and that the attacker managed to later remove from the chain. This reward is
normalized by the number of all accepted blocks. Due to this normalization, the
output of this computation equals the expected number of attacker blocks over
the expected total number of accepted blocks, which in turn equals the left-hand
side of (2.

Recall that the parameter v encodes the probability that a chain is overridden
when it is matched in length. Since honest nodes adopt the first chains that ehy
receive, in case of ties, the ability of the attacker to push his block first to a
significant fraction of the nodes dictates the chances that the next block will be
built on top of its chain.

1
—&— =0 ><
08 | ~ ¢ —1=05 S
T 79' o ’y:l X
— X prob (ROSENFELD)
©
c 0.6f J
ie)
3]
o
T 0.4r 1
w
0.2f 1

0.2 0.25 0.3 0.35 0.4 0.45 0.5
attacker hashrate (@)

Fig. 2. The fraction of accepted blocks that an optimal attacker can double spend
against a defender that uses 6 confirmations to accept as a function of the attacker’s
hashrate . The different curves correspond to different values of +. Rosenfeld’s result
is also plotted for comparison.

Figure 2] depicts the results obtained for a policy with 6 confirmations, as
computed on an MDP that was truncated to consider chains of length up to
60 blocks (the MDP analyzed in [I2] is infinite and needs to be truncated for a
numeric solution). The figure depicts the fraction of blocks an optimal attacker
may double spend, for different values of . This essentially measures the e-

robustness of the policy ¢ = 6. The results of Rosenfeld for the probability
of attack on a block [11] are included for comparison. It is interesting to note
that the fraction of blocks that can be attacked is in fact lower than predicted
by Rosenfeld (for any 7). This is because his analysis (and Satoshi’s as well)
consider an attack on a single block that goes on infinitely, that is, the attacker
is assumed to never give up and to try to catch up with the chain no matter how
far behind he is. In contrast, an attacker that aims to maximize the fraction of
blocks it successfully attacks must occasionally give up and restart the attack
if he is far behind. This effect is demonstrated in these results (note that, on
the other hand, our model allows the attacker to double spend several blocks at
once. These results demonstrate that the effective ¢ lowers nonetheless).

We similarly present the percentage of double spent blocks for different num-
bers of confirmations in Table[2l Each cell was computed separately with its own
optimal policy.

Table 2. The fraction of the network’s blocks that an attacker with a given hashrate
(«) successfully attacks, when using an optimal attack policy, given the number of
confirmations the acceptance policy waits for (conf).

a\conf| 1 2 3 4 5 6 7 8 9 10
2% 10.08% | ~ 0% |~ 0% |~ 0% |~ 0% |~ 0% | ~ 0% | =~ 0% | ~ 0% | ~ 0%
6% [0.69% 0.12% [0.03% | ~ 0% | ~ 0% | ~ 0% | =~ 0% | =~ 0% | =~ 0% | ~ 0%
10% |1.89% | 0.52% | 0.16% | 0.05% | 0.02% | =~ 0% | ~ 0% | =~ 0% | =~ 0% | ~ 0%
14% 13.70% | 1.34% | 0.53% | 0.23% | 0.10% | 0.05% | 0.02% | ~ 0% | ~ 0% | ~ 0%
18% 16.16% | 2.75% | 1.34% | 0.69% | 0.36% | 0.20% | 0.11% | 0.06% | 0.04% | 0.02%
22% 19.37% | 4.92% | 2.80% | 1.66% | 1.02% | 0.64% | 0.41% | 0.27% | 0.18% | 0.12%
26% [13.47%)| 8.12% | 5.34% | 3.63% | 2.52% | 1.78% | 1.28% | 0.92% | 0.67% | 0.49%
30% [18.71%|13.20%| 9.63% | 7.19% | 5.48% | 4.23% | 3.30% | 2.60% | 2.07% | 1.66%
34% 126.46%|20.57%(16.36%(13.29%(10.99%| 9.17% | 7.69% | 6.49% | 5.51% | 4.71%
38% 136.54%31.04%|26.95%23.60%|20.77%|18.37%16.39%(14.66%|13.16%11.84%
42% 150.32%46.42%42.99%(39.91%|37.17%(34.73%]32.49%|30.43%|28.56%|26.84%
46% (69.53%67.65%]65.84% (64.06%62.33%(60.64%| 59% [57.38%|55.79%|54.23%
48% 181.48%180.59%|79.66%|78.72%|77.75%|76.77%|75.76%|74.73%|73.67%|72.59%
50% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%

4.1 Optimal policies

We now present the optimal policies returned by our algorithm, in two particular
setups. Table Bl describes the policy for an attacker with a@ = 0.26,7 = 0 (here
match is of no consequence). The row numbers correspond to the length of the
attackers branch n, and the columns to the length of the honest network’s branch
np.

Notice that here the attacker does not override the network’s chain and re-
ceive rewards until its branch is of length three at least, as a successful attack

requires the merchant sees three confirmations above its chain before the attack
is released. Note, additionally, that the attacker does not give up on his attack
when he is just slightly behind. If his chain is relatively long, he will not abandon
it unless he is at least 3 blocks behind.

Table M similarly corresponds to o = 0.26,~ = 0.5. Each entry in it contains
a string of three characters, corresponding to the possible status of the honest
network: if it is working only on its own branch, if the attacker can possibly match
the length of its branch and split its resources, and if it is already split between
two branches of equal length (fork: irrelevant,relevant, active)ﬂ Actions are
abbreviated to their initials: adopt, override, match, wait, while ‘x’ represents
an unreachable state.

Table 3. Optimal actions for an attacker with a = 0.26,y = 0, against a policy that
waits for two confirmations, when the merchant accepts transactions after 2 confirma-
tions. The row and column indices correspond to n, and ny, respectively. Actions are:
adopt, override, match, wait, or ‘+’ unreachable.

ne\np|0|1(2|314]5(6|7|8]9]10
0 [wlalx || |*x|*x|*x|*x]|*]|*
1 |wiw|w|a|x|x]|*x]|*x|[*x|*x]|x*
2 (wlwlwlwl|a|w|a|*x|*x]|*]| *
3 |wlw|o|w|w|w|w|a|*x|x*x]|*
4 |wlw|w|o|w|w|w|w|a|x*x]| *
5 |wlw|w|w|o|w|w|w|w|a]| *
6 |w|w|w|w|w|o|w|w|w|w|a
7 |wlw|w|w|w|w|o|w|w|w|w
8 |wlw|w|w|w|w|w|o|w|w|w
9 |wlw|w|w|w|w|w|w|o|w|w
10 |w|w|w|w|w|w|w|w|w|o|w

5 Logarithmic waiting time

For every given acceptance policy one could ask what is the probability that
at least one attack, in the course of the entire history, will be successful. This
notion is formalized by e-total-robustness, in Definition[Bl As discussed above, for
any acceptance policy of the form o = k, for some constant k, the probability
that a single attack on C! will be successful goes to 1 as ¢ goes to infinity.
Observe that achieving an arbitrary low e-total-robustness is trivially achievable
by never accepting any transaction. Fortunately, below we show that there exists

" E.g., the string “wms” in entry (n.,np) = (3,3) reads: “in case a fork is irrelevant
(that is, the previous state was (2, 3)), wait; in case it is relevant (the previous state
was (3,2)), match; the case where a fork is already active is not reachable”.

Table 4. Optimal actions for an attacker with o = 0.26,~ = 0.5, for states (na,nn,)
with ng,n, < 6, when the merchant accepts transactions after 2 confirmations.
The row and column indices correspond to n, and np, respectively. Actions are:
adopt, override, match, wait, or ‘«x’ unreachable. The three entries at each cell are:
fork: irrelevant, relevant, active

na\nn| 0 1 2 3 4 5 6
O | Wik @@k | skokok | ok | skokok | kokok | kkok

WikK KWk| Woksk | @k | sokok | ok | ok

WK WWH| WITLk| Weksk | @k | sk | sokx

Wokk| WW3K WWW | WITLk | Waksk | @sksk | skokosk

WWXWWW [WINW | WINLk| Wokk [askk

WK WWK WWW [WWW [OINW | WITLk| Wk

O U | W Do =
<
*
*

Wk WWH WWW| WWW | INW [OITNW | WX

an e-totally-robust policy, for any € > 0 which accepts every transaction in the
blockchain after a time logarithmic in the chain’s current length, as long as the
block containing it still belongs to the longest chain. This result motivated the
modeling of acceptance policies as taking the height of the block as an argument:
It shows that considering policies not constant in the block height open up the
option of achieving a strong security property unachievable otherwise.

Theorem 4. For any e > 0, the policy

Uéo,);al (h) = Ca,e + LIOgba (h)J
is e-totally-robust, where Co ¢ := H -In (% b (1— e’c)fl (1= ba/(ec))fl)] ,
b = BCT*l, with ¢ 1= % . 7(1132‘)2.

Proof. Part I: Let us write (ng, np, h) whenever the attacker’s chain is n, blocks
long, the honest network’s chain is np, blocks long, and the earliest block in the
chain of the network (i.e., the np-th block from the tip of the honest chain)
is of height h. By definition, the attacker can perform a successful attack iff
ng > np, and ny > af;jg“l (h). Assume now that if the attacker performs adopt
at some state (ng,np, h) then the process transits to state (0,0,h + 1) (instead
of (0,0,h+ nh)) That this assumption works in favour of the attacker is clear:
When I/ < h, state (np,ng, h') is always preferable by the attacker over state
(Np, N, h), for any ng, ng. Indeed, these two states differ only in that a successful
attack in the latter state implies a successful attack in the former as well (but
not necessarily vice versa), since the condition ns > of?2* (h) is stronger than

a7

np > ot (B'). In particular, (0,0,h 4 1) is preferable to the attacker over

(0,0, + ny).

8 Technically, transiting to (0,0, h + 1) is realized by transiting to (1,0,k + 1) with
probability « or to (0,1, + 1) with probability (1 — «).

Define h; = b' (i =0,1,2....). Below we abbreviate o = o/2%4!. We define the
ith epoch by the set of states with h; < h < h;41. The sequence (h;) satisfies
the property that o (hjy1) =1 =0 (hiy1 —1) =--- =0 (h;) = Coc + 7. Let p;
denote the probability that the attacker manages to perform a successful attack
on a block belonging to the ith epoch. Suffice it to show that >~ p; < e.

By definition, every attack in the epoch between h; and h; 11 begins at a state
of the form (0,0,h) with h; < h < h;11 (an attack begins after the attacker
abandoned its previous attempt, by an adopt, which leads to this state). A
successful attack on block v = C} in the ith epoch can be reached only after at
least o (h;) blocks were built by the honest network above b (as it requires nj >
o (hi)), including u, and in particular, after at least o (h;) blocks were built since
the creation of u’s predecessor (counting the blocks of both parties, and excluding
u’s predecessor). For any number of steps k > o (h;), the probability that after
precisely k steps n, > ny, is at most e~¢*: By putting Z; := (X; — 1)/ — 2, we
arrive at a sequence of i.i.d random variables that take values in {0, 1}. The event
5211 Xi = 0is then equivalent to 5, Z; < /2, with B [0, Z;] = (1-a)-k.
We then apply to the latter sum Chernoff’s bound: Pr (Z < (1 —0) - E[Z]), with
Z=%F Z and§:= 1 1222

1—a
However, since the number of steps k is not known in general, we upper bound

o0
the success probability of an attackonu by =~ >, e ¢F = e7eohi) (1 — 6_0)71.

k=o(h;)
By the union bound, the probability p; of a successful attack during the ith epoch
can be upper bounded by (hir1 — hg) - e~ <7M) . (1 — efc)_l < higp -e—cohi) .
(1 _ efc)_l — pitl, efc-a'(hi) . (1 o 676)_1.
Part II: In order to upper bound the probability that there exists an epoch
with a successful attack we apply the union bound on the entire sequence of
epochs:

o< (1—em) b et = (5)
1=0 i=1

b (L=)™ Db e Gt (6)

b, - (1 N efc)—l e~ Cac . Z (ba/ (ec))i _ (7)
i=1

bo - (1—e) e 0. S (ba/ef) < (8)
i=1

(ba (1=) (1= b)) - o0 < o)

The last inequality holds by the choice of Cy ., whereas the geometric series
in (8) converges due to b, < e°, by the choice of b,.

Observe that our analysis allowed the attacker to override whenever the
random walk visits the zero (as we have bounded the probability that . X; >

0). Consequently, this bound applies to an attacker of any ~v-value, as it already
assumes that the attacker is always able to match successfully.

6 The Generalized Vector76 pre-mining attack

In this section we present the generalized Vector76 attack (the original attack
was suggested by a user named Vector76 in the bitcoinTalk forums to possibly
explain a successful double spending attack against the MyBitcoin e-wallet [14]).

The attack is a form of pre-mining attack that the attacker can work on
in secret until he is guaranteed to be successful. In this case as well, hybrid
methods that trade off a shorter preparation time in exchange for lower success
probabilities exist. It further assumes that the victim is unable to relay blocks to
the main network, e.g., if he uses a light weight client that receives cryptographic
proof of the attack, but not the blocks themselves. The attack is then easier to
execute compared to a regular pre-mining attack, since it requires the attacker
to generate less of a lead on the honest network, and in fact, in a reverse twist,
relies upon the network to confirm the double spending payment.

The important aspect of this attack is that it draws a clear distinction be-
tween full nodes and light node implementations that do not relay blocks, and
hence demonstrates that light nodes need in fact to wait for additional confir-
mations to be equally secure to full nodes.

The attack proceeds as follows:

1. The attacker starts working on a secret branch of the chain. It embeds the
transaction ¢z (that it later wishes to reverse) in this block.

2. If the defender requires o = k confirmations, the attacker needs to build an
additional k£ — 1 blocks on top of the one containing tz; (for a total of k
confirmations). He attempts to do so, in secret.

3. If his branch of the chain is longer than that of the honest chain, at some
point after he has k confirmations for ¢z, then it shows the k confirmations
to the lightweight client which then that accepts it as the legitimate chain,
since it is the longest one.

4. The attacker then transmits a conflicting transaction tzs to the honest net-
work. As the honest network is not aware of the attacker’s chain, the former’s
chain will grow long enough for tz5 to be accepted by all nodes (and even-
tually even the attacked one).

Figure Bl depicts the attack. Again, notice that a crucial stage in the success
of the attack is that the honest network does not adopt the block containing tx .
Difficulty of the attack The requirement for success in the pre-mining phase
(after which the attack succeeds with probability 1) is that after constructing
k blocks or more, the attacker has a lead of 1 block over the network’s chain.
In a successful regular attack (whether it contains pre-mining or not), against
a similar k-confirmation defender, the network has constructed k blocks on top
of the transaction (including the block that includes it), and at some point the
attacker succeeds to lead over the network, and he thus has at least k such

Honest | <€ <€ <€ <€ tx, ||€

Nodes

A

tx tx,

Attacker F---f---

time |->

1 2 3) 2 =
Attack begins ‘Attacker falls behind Attacker leads & has 2 X, sent to nodes & tx,
8 & resets confs. Shows tx; to victim mined prevails

(victim does not relay blocks)

As the attack begins the attacker starts working on a secret chain with tx, inside its
first block (1). If the attacker’s chain is too far behind it may restart the attack (2).
The attacker manages to gain a lead of 1 blocks, but has the two confirmations on his
tx1 needed to convince the victim (3). He then reveals the secret chain to the victim
(that does not relay it), and collects an item in exchange. He then transmits the double
spending transactions txe to the network which is then included in a block (4). The
network continues to mine atop txa and it eventually prevails (5).

Fig. 3. The progression of a generalized Vector76 attack on a 2-confirmation defender

blocks of his own in his branch. It is therefore easy to see that events in which
successful double spending attacks occur are strictly contained in events in which
the generalized Vector76 attack is successful (and succeeds with probability 1).
The above argument thus shows that light nodes are strictly less secure than
regular nodes, and need to wait for more confirmations (we include below an
analysis that quantifies the effect of waiting longer).

In contrast, a regular (generalized Finney) pre-mining phase that leads to a
successful attack with probability 1 has much stricter requirements: the attacker
needs to lead by k + 1 blocks over the network (again, here he can launch a
Vector76 attack as well, since he has built at least k blocks and leads over the
network).

Resets and attacker strategy The generalized Vector76 attack described
above can in fact be improved if attackers pick a better policy regarding restarts
of the attack. This policy can again be found by solving MDPs that reward
successful attacks. We leave this for future work.

The Vector76 attack against full nodes The Vector 76 attack can also be
applied to full nodes if the attacker can somehow manage to send his chain with
k confirmations to the victim while a similar length chain is being propagated
through the network. In this case, even once the defender relays the block, the
network will not adopt it, since it is of equal height to the one created by the
attacker. The attacker naturally needs to time the transmission right, and if he
misses, his original block may be adopted by some fraction of the honest nodes
(a model with a parameter similar to -y that is used in selfish mining may capture
this).

Analytical guarantees of security Below we provide an analysis of the se-
curity of lightweight nodes against the generalize Vector76 attack. As the trans-
actions that the node accepts are conditioned on the attack’s current state, the
arbitrary-block security guarantee does not apply. Fortunately, we can upper
bound the safety level against any attack, as follows. The policy defined below
is of the form ogP” = ojPy, and applies for all 4.

Definition 5 Let
o' :=min{k e N: g(k,a) <e- (1 —a)},

[e3

where
ok, 0) ;_g Loz, (1 fa)l. o
B)
<nz—%< " 1>'o‘k'(1—a> +
- e N
n_kzr:l+1< +n 1>.a l.(l_a)k-i-l). (1)

Theorem 5. For any € > 0, the policy oiP¥ is e-fractional-robust.

While the technique used in the following proof upper bounds the success-
probability of an attack on an arbitrary block, we stress that its result cannot be
interpreted as a security-guarantee for an arbitrary block. Transactions in this
scheme are explicitly conditioned on the attack’s state before the transmission
of the transaction to the merchant. Nonetheless, this theorem shows that the
merchant can guarantee any e-fractional robustness, by waiting long enough.

Proof. Let b be an arbitrary block of the attacker. Let T' > 0 and denote by Np
the total number of blocks created in the system up to time 7. Finally, denote
by I the indicator random variable of the event where block b participates in
a successful attack. Under the generalized Vector76 attack, the attacker never
publishes its secret chain. Therefore, eventually, all of the transactions in the
honest network’s chain will be accepted, as it grows indefinitely. Additionally,
whenever an attacker block participates in a successful attack, by definition, the
policy must have accepted a transaction in that block. Therefore, assuming a
roughly constant number of transactions per block, and denoting the entire set
of attacker blocks by att, we obtain:

ZuGT‘ Pr (gattacked (’U,))

li -
00 height(t)

1
i 7 Zueth Pr.(c‘:atmcked (u)) _
t—o0 T height(t)

PI’b (gattacked(b))

)

500 1 - height(t)

where the probability here is also over the choice of b in T°°. This identity holds
due to the Law of Large Numbers. The last expression is upper bounded by
M“;’M(m, as the longest chain grows at least at the rate of the honest
network’s chain. We now provide an upper bound on Pry (Eattacked(D))-

Fix the attacker’s policy m4. The attacker can utilize b to carry out a gen-
eralized Vector76 attack if and only if, at some point in time, the following
conditions are met: n, > n; and the number of blocks in the attacker’s chain
above b is at least k. Indeed, if the first condition is not met then the merchant
will count zero confirmations for its transaction in the honest network’s chain,
and will not accept. Likewise, if the second one is not met, the merchant will
not see k confirmations in the attacker’s chain, and will not accept. Assume that
block b has k confirmations (including itself). The probability that, in a period
of time in which the attacker created k blocks, the honest network created n
blocks is given by ("Jrs*l) k(1 =)

As proven in Section [B] the lead that the attacker gained over the network’s
chain, prior to mining b, can be upper bounded by the distribution vector (p;)°,

l
with p; = 1; _2;‘ . (ﬁ) . In consequence, given n, the probability that the
attacker will ever succeed in bypassing the honest network’s chain is 1, if [+k > n,
n—(l+k)
and (ﬁ ,if n > [+ k (here we used the worst-case assumption that v =

1). Therefore, the probability that b participates in a successful attack is upper
n— +
bounded by g(k, «), which is the sum of p;- (n+571) o (1—a)- (ﬁ)()
over all [and n.
Therefore, the expression (I) upper bounds the probability that an arbitrary
block of the attacker will have k confirmations and at the same time will be
part of a chain longer than the honest network’s. All in all, we obtain that the

fraction of attacker blocks (out of the total number of accepted blocks) can be

g(k,e)

upper bounded by k O‘) . In particular, oP¥ := g(n, a, €) is e-fractional-robust.

7 The profit of an attacker

Arguably, one might hope that carrying out double spending attacks would be
costly to the attacker, due to the loss in potential profit the attacker could
gain from participating honestly in the mining effort. This, presumably, will
disincentivize attackers from committing to long attack-strategies which waste
their resources. Alas, the work of Sapirshtein et. al. [I2] observes that this is
not the case in general. An attacker with sufficient hashrate or a significant
~ can actually combine profitable selfish mining with double spending attacks.
Their idea is simple: Every profitable selfish mining scheme arrives with positive
probability at states of the form (ny,ng), na > np + k, from which the attacker
can plan a definitely successful double spending attack (against the policy o =
k). In this section we aim at quantifying the potential profit for the attacker
under optimal combinations of these attacks.

To this end, we adapt the MDP used above to a setup in which the attacker
maximizes its returns from both the block reward and fees, and from possi-
ble double spending attacks it manages to perform. We make the simplifying
assumption that the reward is fixed between blocks, and thus we reward the at-
tacker with one unit for every block of his which is part of the longest chain. We
additionally reward it with R units of reward for every successful double spend.
Following [4], we normalize the rewards by the length of the main chain. Figure @
depicts the profit of an attacker that carries out such an attack. The dashed line
corresponds to honest mining without double spending attacks (where a miner
with « of the hash rate gains an a-fraction of the rewards), and the other curves
correspond to the profit computed by the MDPs for different values of . Con-
sistent with the results of [AI12], at v = 1 the attacker is always profitable (at
any «), and occasionally attacks with double spending attacks. Here, the gains
from double spending are assumed to be R = 2 block rewards.

1 T T T e
—a— =0

:@ 0.8+ = ~=05 4
% —8— =1
g — — — honest mining
< 0.6 1
>
3 -~
o L -]
4:3, 0.4
S
c 0.2f]

0

0 0.1 0.2 0.3 0.4 0.5

attacker hashrate (o)

Fig. 4. The profit of an attacker from carrying optimal combinations of selfish mining
and double spend attacks on the o = 6 confirmations policy, assuming a successful
double spent transaction is worth three times the value of an ordinary block.

Figure [l depicts the gains for different values of double spend. The different
plots correspond to different reward values from successful double spending. It is
interesting to see the expected result: given that rewards from double spending
increase, smaller miners can choose to deviate from honest behavior and gain
(honest mining is again represented by the dashed line).

8 Conclusions

We presented a variety of different interpretations of the security of a single
transaction in the Bitcoin system, and matching advice regarding the number

1 T T T lfJuuuuuw 1
double-spend value=0 /
1=} - |
(selfish mining)
- 0.8 | —=— double-spend value=1 1
= —=— double-spend value=2 /
S double-spend value=4 g
3 0.6f | —=— double-spend value=8 / 1
$ — — — honest mining j
8 0.4f - - J
i‘é "u —
a
0.2r 1
0
0 0.1 0.2 0.3 0.4 0.5

attacker hashrate (o)

Fig. 5. The profit of an attacker from carrying optimal combinations of selfish mining
and double spend attacks on the o = 6 confirmations policy, assuming that it is able
to match a fraction of v = 0.5 of the honest nodes.

of confirmations merchants should await in order to properly secure their trans-
actions. Our suggested prescription can be summarized, in short, as follows:

— Transactions whose timings can be assumed to be non-adversarial can be
protected via e-arbitrary-robust policies, such as the ¢%"® family presented
in Section

— Merchants engaging in medium-valued transactions at a regular rate ought
defend against a reversal of non-negligible fractions of the transactions they
have authorized, in the long term (the e-fractional-robustness security model,
coupled with the o/7%¢ policy).

— Recipients of large transactions are advised to commit to policies such as
otetal (Section [) which waits a time logarithmic in the chain’s length,
thereby guaranteeing themselves e-total-robustness, i.e., security from even
a single reversal of any of their payments.

— Light clients are advised to use a policy specifically protecting against the
generalized Vector76 attack (o°P, Section [d)).

Indeed, regarding the latter point, we demonstrated a clear case in which
light nodes are less secure than full nodes solely due to the fact that they do
not relay blocks further. This observation suggests several mitigation techniques,
including sending requests for recent blocks and relaying them to the network,
which would in fact imply that hybrids between light nodes and full nodes can
be more secure.

We have further shown that it is difficult to argue that attackers lose revenue
from mining if they are trying to attack. Instead, Bitcoin can be considered to
give guarantees lower bounding the losses of merchants.

Many research directions remain. The models here should be further adapted
to settings with more significant delay. Several hybrid guarantees can also be
explored. One such example is a fractional guarantee for a merchant that receives
transactions occasionally (but not in every block), or attackers that are more
limited in selecting the timing of their attacks (e.g., if a store is only open
during the daytime). Finally, it would be interesting to evaluate the guarantees of
variants of the protocol such as Bitcoin-NG [3] and Ethereum [I] against similar
attacks, as they employ slightly different rules to manage the blockchain.

References

1. Ethereum. https://www.ethereum.org/.

2. T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten. Have a snack, pay
with bitcoins. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth Interna-
tional Conference on, pages 1-5. IEEE, 2013.

3. 1. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A scalable
blockchain protocol. arXiv preprint arXiv:1510.02037, 2015.

4. 1. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security, pages 436-454. Springer, 2014.

5. H. Finney. The finney attack. Originally in
https://bitcointalk.org/index.php?topic=
3441.msg48384#msg4d8384.

6. J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology-EUROCRYPT 2015, pages 281-310.
Springer, 2015.

7. G. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price of one?
double-spending attacks on fast payments in bitcoin. TACR Cryptology ePrint
Archive, 2012:248, 2012.

8. Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols.
Financial Cryptography and Data Security, 2015.

9. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

10. K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. TACR Cryptology ePrint Archive,
2015:796, 2015.

11. M. Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009, 2014.

12. A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies
in bitcoin. CoRR, abs/1507.06183, 2015.

13. Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin.
Financial Cryptography and Data Security, 2015.

14. Vector76. The vector76 attack. Originally in https://bitcointalk.org/index.php?
topic=36788.msgd63391#msgd63391.

A MDP description

In this section we describe briefly the computation method of the attack policy
that maximizes the fraction of attacked blocks, against a defender policy of
the form o, = k, for some constant k (that may depend on «). A block b of
the honest network is successfully attacked if the published chain above it is of
length k£ or more, including b in the count, and the attacker then overrides it by
publishing a longer chain (or matching it). A given state of the form (ng,ns)
represents the lengths of the attacker’s and the network’s chain, respectively,
counted above the latest fork (i.e., the latest block adopted by both parties).
Thus, if n, > nj, > k, then the attacker can attack the n; + 1 — k blocks at the
bottom of the honest chain (above the fork)—these blocks have k confirmations,
hence were accepted by the policy o. The remaining & — 1 blocks are indeed
overridden but not attacked, since the policy didn’t accept them yet, hence the
transactions in them were not considered safe yet by their recipients. This is
the main difference from selfish mining, where the attacker is rewarded for these
blocks as well. When the attacker abandons the attack and adopts, all blocks
in the chain it adopted will be accepted and never attacked, since future attack
blocks contain them in their history.

Accordingly, we grant the honest network a reward of n; whenever the at-
tacker adopts. When the attacker adopts, we reward the attacker n, — (k — 1)
(this is the number of blocks it successfully attacked), and reward the honest
network & blocks (this complements the attacker’s reward to the chain’s new
length ny, + 1, and is needed for appropriate normalization). Further complexity
arises due to the possibility of the attacker matching the honest chain’s length
(rather than succeeding it by 1). Whether this match action is feasible, for a
given state (nq,np), is encoded in a third field called fork with possible values:
irrelevant, relevant, active. For further details, and for a description of an al-
gorithm that uses this MDP to maximize the fractional non-linear objective —

refer to [12].

Table 5. A description of the transition and reward matrices of the MDP. The third
column contains the probability of transiting from the state specified in the left-most
column, under the action specified therein, to the state on the second one. The corre-
sponding two-dimensional reward (that of the attacker and that of the honest nodes)
is specified on the right-most column.

State x Action State Probability Reward
(1,0, irrelevant) e
(na, 7, "), adopt (0,1, irrelevant) 1-a (0,7)
. I (na — nn, 0, irrelevant) o _ 5
(na, nn, -), override (o —np—1,1, relevant) 1o (nn — k+1,k)
(na,nn,irrelevant), wait | (ng + 1, ng, irrelevant) e (0,0)
(na,nn,relevant), wait | (na,nn + 1, relevant) 1—« (0,0)
, . (na + 1, np, active) e (0,0)
asMh, act , t
(a, s, active), wai i| (na —na, 1, relevant) y-(1=0a) |(na—k+1,k=1)7
(na,nn, relevant), match
(na,nn + 1,relevant) |(1—7) - (1 —) (0,0)

Tfeasible only when n, > np

*feasible only when n, > ny,

8if np < k — 1, then the reward is (0,nj, + 1), as no block was actually attacked.

Yif np, < k — 1, then the reward is (0,np), , as no block was actually attacked.

	Bitcoin's Security Model Revisited

